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Abstract

The use of internal Bank models for meeting capital requirements has been
approved for some time. Regulators then face issues of model approval necessi-
tating some public domain analysis of model performance. This paper presents
a new approach to risk model evaluation using forward looking risk neutral prob-
abilities. In addition to VaR and CVaR we analyse a new measure termed here
RW AV aR that was proposed in Carr, Madan and Vicente Alvarez (2011). The
new measure is a formalization of the popular concept of risk weighted assets
used in the Basel approach to capital requirements. The formalization allows for
a possible leveraging of information contained in bid and ask prices and the study
reports on the potential of this approach. Capital measures using RWAVaR
are observed to be sensitive to volatility, the volatility of volatility, the skewness
of return distributions and the volatility spread across maturities. Movements
in bid ask spreads also strongly influence capital requirements. Additionally
there is a potential for some procyclicality to be built into the requirements,
particularly when one adapts requirements to movements in liquidity spreads.

1 Introduction

Risk Weighted Assets (RWA) have been a critical component of capital require-
ments of the Basel system since its inception in December 1992. Though initially
set up to absorb systemic losses and attain cross country consistency the system
moved in June 2004 to Basel II towards intertemporal consistency by allowing
the use of internal risk based models. The models could in principle measure
changes in risk levels and adjust capital requirements accordingly. There was
and still is a concern related to "risk-weighted asset optimization" or the choice
of models that minimize the risk held. There were reports in November 2011
(FT Wednesday November 9, 2011) of banks in Europe reducing capital require-
ments by declaring assets held to be less risky based on new models. However,
the models employed must be approved by bank supervisors.

Consequently, there is an important interest in understanding the internal
models, their properties and the precise risk sensitivities captured. In this regard
one notes that even though Value at Risk or VaR has been criticised for its
mathematical properties (Artzner, Delbaen, Eber and Heath (1999)) and for
its destablizing potential, Danielsson et. al. (2001), Basak and Shapiro (2001),
Leippold, Trojani and Vanini (2006), it remains the reference measure for market
risk. In the U.S. the SEC requires mandatory VaR disclosures. The destablizing
potential arises from countercyclicality in capital requirements that feed a boom
with lower requirements and enhance a bust with higher requirements. It is then
a regulatory interest that capital requirements be procyclical if possible.

Little is known about the internal VaR models used in banks and approval
is granted on the basis of accuracy estimated on past statistical data. Perignon
Deng and Wang (2006) observe that “Berkowitz and O’Brien (2002) published
the first direct evidence on the performance of US banks’ internal VaR mod-
els.” Internal models have access to information on exact trading positions while



external assessments must work with benchmark portfolios. Nonetheless a per-
formance evaluation of models in the public domain is critical to informed reg-
ulatory decisions on model approval.

A particular interest in evaluating risk model performance are a deliniation
of the precise risk sensitivities driving capital requirement variations? The co-
variations of regulatory capital requirements across time and entities with macro
and micro economic factors are a further focus of study. A secondary interest
relates to procyclicality of capital requirements that may reduce leverage at the
height of a boom while relaxing the same in a down turn. To answer these
questions we investigate the behaviour of capital requirments supporting styl-
ized risk positions. The capital requirements themselves are are derived from
a variety of models. Next we proceed to evaluate the risk sensitivities of the
derived required capital.

The determination of required capital necessitates an identification of the
data to be used along with a broad understanding about the purpose of such
requirements. In consistency with the Basel accords we take the objectives to
be an assessment of RWA that seek to determine the prevailing loss exposure.
Given the focus on loss exposures we entertain the use of forward looking option
price data with a view to complementing historical time series data that is more
commonly used in the industry for model validation. This focus on option
prices and risk neutral probabilities is further motivated by the need to ensure
sufficient capital that makes risk positions acceptable to the general economy.
From this perspective risk positions failing to earn required risk compensations
reflected in risk neutral pricing are viewed as unacceptable. A simple calculation
presented later shows that the loss exceedances at a prespecified risk neutral
VaR quantile, will when evaluated on the historical measure, be far below the
exceedances at a comparable historical quantile. In fact a typical risk neutral
formulation would explain the results of Pérignon, Deng and Wang (2006), who
observed 2 exceedances when 74 were historically expected.

An second and important reason for exploiting option prices is the relative
wealth of this data for some entities. Additionally option data reflects many
new risk features relevant for valuation which are not available in other data
sources. Historically we get just one new observation per day. On the option
surface we get a read on a multiplicity of risk neutral distributions with well over
a hundred new observations each day. One gets access to changes in risk neutral
skewness that on occasion may arise during a prolonged boom as investors buy
downside puts to cover the risks related to an expected bust. Capital require-
ments based on option data can potentially leverage such skewness changes to
increase capital requirements in a boom, thereby inducing some procyclicality
in RWA computations. Of even greater interest is the use of data on explicit
bid and ask prices. The bid ask spread can widen in a boom to discourage the
accumulation of a rising inventory of downside puts. Both the skews and the bid
ask spreads are sources for some procyclicality that may be difficult to access
in historical return time series.

These risk neutral considerations suggest a new approach to measuring RW A
that may be termed RW AVaR for Risk Weighted Asset Value at Risk. The



specific proposal follows Carr, Madan and Vicente Alvarez (2011) and is related
to two price equilibrium theory as developed in Madan (2012). In this theory
all market participants trade with an abstract market as their counterparty. By
way of example, if a market participant acquires a positive random cash flow
X then the markets position —X is nonpositive and not formally acceptable
to the market. Acceptability to the market is formally modeled by a positive
expectation under a set of test measures. These test probabilities approve mar-
ket acceptability when all test valuations are positive. A participant acquiring
X > 0 must offer a price u making u — X acceptable. The smallest such u turns
out to be the supremum of all test valuations of X and is an upper valuation
u(X). The acquisition may be financed and not all of the acquisition price needs
to be part of the equity capital. However, the valuation by the market of X
as an asset requires a lower valuation [ making X — [ market acceptable. This
lower valuation is the infimum of all test valuations, I(X) < u(X). Financing is
limited to I(X) and consequently the required equity capital can be chosen as
the difference u(X) — I[(X). The same argument may be equally applied to all
random cash flows X that need not be restricted to being nonnegative. In the
two price economy the only prices observable in the market are u(X) and I(X)
for all X and the law of one price is abandoned. The spread between the upper
and lower prices depends on the size and the variety of the measures being used
to test for acceptability and the law of one price is observed only for cash flows
that happen to have an identical valuation under all test probabilities. We de-
fine RW AV aR by the spread between the upper and lower valuations of such
a two price equilibrium. We show here that when the upper and lower valu-
ations are constructed from a single underlying risk neutral distribution then
this capital charge is both an integral of CVaR and an integral of VaR across
the quantiles of this risk neutral distribution. Consequently we end up working
with the industry benchmark which is applied risk neutrally.

Markets do provide access to bid and ask prices on numerous traded secu-
rities and one may consider their use as candidates for the lower and upper
valuations of a two price economy. The risk charge or capital required would
then be this difference. However, these market spreads probably do not reflect
reasonable capital charges for holding a risk position for any but the shortest
time spans as they are more closely related to turning over positions in relatively
liquid markets as opposed to actually holding positions over a substantive time
interval. Upper and lower valuations derived from a wide range of test proba-
bilities would deliver spreads of an order of magnitude above market bid and
ask spreads that can better reflect capital charges for holding such positions.
In order to exploit and leverage data on market bid and ask prices we cali-
brate parametric models for valuation spreads to such market data but then
we enhance the set of test probabilities used to construct the upper and lower
valuations for the RW AV aR computations.

The RW AVaR approach is implemented first at an aggregate level using
options on the S&P500 index for the period 1996 to 2012 using only midquote
option prices. At a disaggregated level we implement the model for four bank
stocks over the period 2007 to 2012, using now the bid and ask prices sepa-



rately. Finally we report on the risk sensitivities and cyclicality of the resulting
RW AV aR computations. At both the aggregate and disaggregate levels we ob-
serve some procyclicality. This paper presents an exploration of an important
field that is in need of much greater attention at a rigorous level.

The alternative approach offered by RW AV aR has the benefit of leveraging
information in options markets to help monitor financial leverage, or at least
it provides a complementary observation on the issue. There is a disadvan-
tage related to breadth of securities for which we have information on option
prices. Some of these disadvantages may be addressed by attempting to employ
exchange traded funds as spanning factors. Many of these funds have option
data but how well they span other relevant risks remains to be investigated. In-
stead of using a stock option prices, one could also use factor spanning methods
coupled with option prices for the spanning factors.

The outline of the rest of the paper is as follows. Section 2 introduces the
concept of RW AV aR and its relationship to VaR. Section 3 presents the results
applied at the aggregate level. In Section 4 we present results on RW AVaR at
the disaggregated level of positions in options on four banks over the period 2007
to 2011. Section 5 remarks on our use of risk neutral probabilities as compared
with the physical measure. Section 6 concludes. The Appendix provides further
technical details.

2 RWAVaR

Risk weighted assets provide a way to evaluate values that may be lost. The
computation includes a write down of asset values coupled with liability add ons.
The latter are associated in particular with derivative liabilities that accomodate
an allowance for a possible unfavorable liability unwind. A model for assets
which takes risk weights into account is then a dual model for the asset write
down and the liability add on. Cherny and Madan (2010) proposed a model for
such lower and upper valuations that incorporates model uncertainty using a
Choquet capacity (Huang, Iancu Petrik and Subramanian (2011)). Madan and
Schoutens (2011) and Madan (2012) formulated two price equilibrium models
where the law of one price fails in equilibrium and the only price information
available from markets is that of two nonlinear lower and upper prices. Carr,
Madan and Vicente Alvarez (2011) use these two prices to define capital as the
spread between the upper and lower prices. It represents the cost of potentially
entering and exiting the market on unfavorable terms in both directions.

The nonlinearity of upper and lower valuations recognizes that the lower
price for the sum of two positions is above the sum of the two lower prices
taken separately. Similarly the upper price for the sum is below the sum of
two upper prices. As a result the capital for the aggregate position, defined
by the difference in upper and lower valuations, is smaller than the sum of
component capitals. As a consequence it is tempting to package risks in capital
determination. A conservative approach is to not allow for packaging and this
is the position taken in current RWA computations, with some exceptions when



deemed appropriate.

The risk weighting formulas in the Basel capital regulations, in particular,
do not allow for portfolio effects Specifically the capital required in support of
loans depends only on the risk of the loan and not on the portfolio to which
it is added (Gordy, 2003). The approach of adding up singular capital charges
has the disadvantage of ignoring diversification benefits and is generally justi-
fied only under comonotonicity or a strong single factor model. In general one
should adopt a portfolio approach whenever there is demonstrable understand-
ing of the joint probability laws or correlations involved. In the absence of such
confidence in joint laws or the correlations involved, the practice of adding sin-
gular charges provides a conservative upper bound. For simplicity and with a
view to avoiding issues of modeling joint returns we report results based on the
additivity approach.

The literature on modeling the lower and upper prices in two price equilib-
rium economies begins by modeling acceptable risks thought of as random cash
flows X by requiring such risks to have a positive expectation under a whole host
of test probability measures Q € M. We term these ) scenario probabilities.
The set of acceptable risks then forms a convex set A of random variables that
contains the nonnegative random variables. The latter are always acceptable.
The set of acceptable risks A is defined as

A={X|E°X]>0, all@QeM}

The set of test probabilities M may be thought of as the set of measures ap-
proving acceptability or membership in A of a random variable X.

The two prices, lower [(X) and upper «(X), in equilibrium (Madan (2012),
Cherny and Madan (2010), Madan and Schoutens (2011)) are then given by
infima and suprema across test probabilities. Formally we have

(X) = Qigﬁ/l E°[X]
u(X) = sup E9[X].
QeM

When acceptability is determined solely by the probability distribution func-
tion Fx(x) of the random variable X then the lower and upper prices have a
simpler representation. Before this may be presented we need to identify the
distribution function involved.

For this purpose consider the classical complete markets context when the
law of one price prevails for all X. In this case we have {(X) = u(X) for all
X and M has a single element given by an equilibrium risk neutral measure.
Acceptability in the classical case reduces to positive risk neutral expectation
or a positive alpha trade. In order to ensure that the acceptable risks in a two
price economy are strictly smaller than the classically acceptable positive alpha
trades we begin with the risk neutral distribution function. Such a choice ensures
that acceptable trades for the two price economy continue to earn classical risk
compensations.



For acceptability defined in terms of this risk neutral distribution function,
it is shown in Cherny and Madan (2009) that there exists a concave distribution
function ¥(u) defined on the unit interval 0 < u < 1 such that

100 = [ av(Ex@) 1)
W(X) = —/_OO 2dW (1 — Fx(z)). 2)

It is shown in Cherny and Madan (2010) that, in this context, the set of test
measures () approving acceptability, are given by all densities Z(u) on the unit
interval with antiderivatives L, satisfying L' = Z, and L < W. This approach is
related to Choquet integrals (see e.g. Schmeidler (1989) and Follmer and Schied
(2004)).

Further, it is shown in Carr, Madan and Vicente Alvarez (2011) that capital
measured by the spread is an integral against the differential of the inverse
distribution Gx (u) defined by Fx(Gx(u)) = u. Specifically

1
w(X) = I(X) = / (W(w) + (1 —u) — 1) dCx (u).
0
According to the arguments above we set
RWAVaR(X) = u(X) - I(X).

The following proposition relates RW AV aR to both VaR and CVaR. First
we note that

VaR(u) = —-Gx(u)
Gx(u
CVAR() = —% / " Py (a).

Proposition 1 RW AV aR may be related to CVaR and VaR by

RWAVaR

- /1 uw (U (u) + 9" (1 —u)) CVaR(u)du

1
u

0

1
/ VaR(u) / — (U () + U (1 v)) dv du
0
Proof. See Appendiz. w

We note that both CVaR and RW AV aR are integrals with respect to VaR
across quantiles with some weight function. Traditionally capital is related to
VaR under the historical probability. Recommendations have been made to
improve the theoretical properties of the risk measure by using instead CVaR
under the historical probability. The recommendation flowing from two price
equilibrium economies is to use instead RW AV aR evaluated under a risk neutral



probability. Though RW AVaR may be computed directly without reference
to VaR or CVaR proposition 1 is useful in establishing the link between the
concepts and justifies the nomenclature RW AV aR.

The particular distortion function ¥(u) which we employ in the paper was
introduced in Cherny and Madan (2009, 2010). It is called minmaxvar and is
defined by

1

1+n
qf(u):1—(1—um) . 0<u<1,7>0

where the parameter 1 determines the level of concavity. When we take for
1 an integer value then this distortion combines the operations of evaluating
the expectation of the minimum of 7 4+ 1 draws from the cash flow distribution
function with that of evaluating the expectation from a distribution function
such that the maximum of 1+ 1 draws has a distribution function matching the
cash flow distribution function. The greater the value of 7, the more concave
is the distortion, making the set of acceptable risks A smaller. The choice
of this distortion is motivated by the desire to reweight large losses upwards
and large gains downwards. Expectation under concave distortion is also an
expectation under a change of measure with the measure change being defined
by the derivative of the distortion computed at the quantile. We therefore
want U’'(u) to go to infinity near zero and to go to zero near unity. This is
accomplished by minmaxvar.

3 VaR, CVaR and RWAVaR at the aggregate
level

For a hypothetical aggregate risk that may be referred to in making judgements
about capital requirements in the economy we consider first the risk exposure of
holding a position in the S&P 500 index for say three months, with the position
initiated on a particular day. From our perspective this requires access to the
risk neutral distribution of the index three months out. Such information is
embedded in the prices of index options and given their relative liquidity we
work here with just the mid quotes of option prices. We shall consider liquidity
issues and the specific use of bid and ask prices separately when we consider
risks at the level of individual stocks. At the level of individual stocks credit
issues also play a part and strategies for incorporating credit risks in capital
charges will also be addressed. For the aggregate index we initially put aside
liquidity and credit considerations. What remains by way of data are mid quote
option prices.

There are many prices at any given time covering a relatively random set of
strikes depending on how the index has moved for a fixed number of maturities,
that are themselves time varying. However, even though there are some hundred
prices, there are many constraints on these prices imposed by the absence of
static arbitrage as shown for example in Carr and Madan (2005). The number
of degrees of freedom in movement is therefore much smaller than the number



of option prices. Informed opinion from market participants and the literature
places the number of degrees near four. A lot of information about the set
of option prices varying across strikes and maturities at a particular point in
calendar time is captured by four entities. They are i) level of at-the-money
volatility, ii) the implied volatility skew, iii) the implied volatility convexity and
iv) the spread of at-the-money volatilities at two maturities. The four entities
may be mapped into the four parameters of the Sato process based on the
variance gamma process. Carr, Geman, Madan and Yor (2007) showed that
this process adequately synthesizes a static option surface at a given point in
time.

The particular model chosen is not that critical and a number of models can
serve as adequate synthesizers or interpolators for a static surface provided they
are sufficiently rich in their parametric structure. Once calibrated they repro-
duce the market risk neutral distribution that is essentially unique between the
smallest and highest calibrating strike. Outside this range there is little market
information and the distributions reflect model tail extrapolations. However,
many models calibrating the option prices also have similar tail decay rates and
are expected to give similar results for the upper and lower prices studied here.
The particular model employed here was termed the VGSSD model (see Ap-
pendix 2.) as the Sato process leverages the property of the variance gamma
law at unit time. This law is self decomposable and one obtains the marginal
distribution at all relevant maturities by scaling the self decomposable vari-
able. In addition to the three parameters of the variance gamma law capturing
volatility, skewness and kurtosis there is an additional fourth scaling parame-
ter that calibrates the spread of at-the-money volatilities. The VGSSD model
is employed as an interpolator summarizing mid quote option prices into four
parameters which subsequently allows for the construction of risk distributions
at any specific maturity.

The VGSSD model is based on a variance gamma law (Madan and Seneta
(1990), Carr, Madan and Chang (1998)) for the logarithm of the stock price
at unit time. The variance gamma law is the law of the random variable X =
0G+0+vGZ, where G is a gamma variate with unit mean and variance v while Z
is an independent standard normal variable. Conditional on the gamma random
variable G the logarithm of the stock is normally distributed with mean G and
standard deviation ¢v/G. The volatility v of the gamma random variable then
serves as a volatility of volatility parameter and captures the kurtosis of the
distribution. Skewness is controlled by § while the base volatility is ¢. In the
VGSSD model the distribution of the logarithm of the stock at maturities
t is given in distribution by the law of t7.X for a scaling parameter . With
the addition of this scaling parameter « that controls the spread of volatilities
between two maturities we have a four parameter model for all option prices
across strikes and maturities at market close for each day, where the parameters
are o,v, 0, and 7.

At market close on each day from the start of January 1996 to the end of
December 2011 we estimate the four parameters of the VGSSD model using
maturities between one month and six months. Thus we obtain time series oy,



v, 0 and +v,. Anticipating that any practical procedure would employ some
parameter smoothing we construct smoothed parameter values in the various
capital candidate computations. The unnormalized weight applied at time ¢ to
a parameter value at time ¢ — s, for s > 0 is chosen as A\° for A = 0.9. The weight
for a monthly delay is around 11%.

We then build the risk neutral distribution of the stock at precisely three
months into the future from date t. From this distribution one may evaluate
the VaR; and CVaR; for a long position in the index at market close for each
date. Additionally on choosing a concave distribution function for a distortion
one may also evaluate the RW AV aR;. The particular distortion employed was
minmaxvar introduced in Cherny and Madan (2009) with a distortion parameter
1 that controls the degree of concavity and thereby reduces the set of acceptable
risks for higher levels of stress or concavity 1. The Appendix provides further
details. For the index we work with a fixed level for 7. Later in the paper when
working with individual stocks we estimate 7 directly from data on bid and ask
prices of options.

In order to better understand the relationship between our candidates for
capital requirements, VaR;, CVaR; and RW AVaR; and the risks as they are
captured in the option surface we regress these measures on the surface parame-
ters oy, vy, 0 and v,. With a view to addressing cyclicality we include the level
of the index lagged some two months on the view that the real economy lags
the financial markets by at least a few months. Given the potential nonlineari-
ties present between VaR and its various integrals and the index level, we also
include the squared index level. The choice of two months though somewhat
arbitrary, is motivated by the recognition that stock markets are leading indica-
tors of turns in the business cycles of the non-financial sector. We felt that the
lag of one month was too short and three months was probably too long and so
settled for two months.

The results for the full period 1996-2011 are presented in Table 1, with t-
statistics reported below coefficients to two decimal places. The risk dimensions
of volatility, skew, kurtosis and the vol spread as represented by o,v, 8,y are all
significant, though VaR and CVaR are positively related to v while RW AVaR
is negatively related. Hence kurtosis appears to reflect tailweightedness for VaR
and C'VaR while it may be representing peakedness for RW AV aR.

Interestingly, for both VaR and C'VaR the lagged index and its square are
not significant indicating that these measures are not related to the economic
cycle. RW AVaR on the other hand is positively related to the lagged index
with a negative coefficient on the squared index. The general relationship is
that of procyclicality as RW AV aR rises with the index with the turnaround
occuring in a region where the market has more than doubled.

To get a further appreciation of the nature of these relationships we partioned
the data at the end of the tech bubble as observed in a trough for the index.
This gives two periods 1996 — 2004 and 2004 — 2011. Tables 2 and 3 report
results for these two periods. The results for the first subperiod compare with
the full period with regard to the risk dimensions. All three capital indices
reflect procyclicality as observed by significant and positive t-statistics for the

10



index in Table 2.

For the second subperiod kurtosis is not significant for RW AV aR otherwise
the results compare with the full period with regard to the risk dimensions.
With regard to cyclicality however, all three capital candidates appear to be
comparably countercyclical. We address the possibility of attaining procyclical-
ity if we also leverage movements in bid ask spreads in this second subperiod.
These results are reported in the next section after we explain the bid ask pricing
model in greater detail.

The tech boom did take the market to new levels in the first period with
fears of the bust possibly leading to increased skews reflected in higher capital
requirements as the boom roared along. The second period can be better char-
acterized by a recovery than by a boom and at this level of market performance
procyclicality of the measures did not set in. This conclusion is reversed in
section 4 when the effects of spread movements are included.

4 RWAVaR at the disaggregated level

The analysis of capital requirements at the level of positions in single stocks
should possibly take account of movements in bid and ask prices or liquidity
spreads in addition to the risk dimensions already observed at the aggregate
level. In this section we develop the application of equations (1) and (2) with a
view towards adapting capital requirements to information revealed by changes
in spreads on single name options. The implementation of these equations
necessitates a specification of the distortion to be employed in constructing
the bid and ask prices and here we follow Cherny and Madan (2009, 2010) and
use the minmaxvar distortion.

In addition to the parameters o, v,~, 0 seen at the aggregate level, we have
the additional parameter n that will essentially calibrate or synthesize the ob-
served bid and ask prices. One hopes that some variations in bid and ask prices
during booms may get related to sell side inventories building up on down side
protection that may then serve as a source for some procyclicality in capital
requirements. Analytical formulas relating a risk neutral distribution function
for the stock price to bid and ask prices of put and call options are developed
in Cherny and Madan (2010), and are employed in the calibrations conducted.

For this particular distortion one may relate RW AV aR to an expectation
of CVaR taken at a random quantile related to the Beta distribution.

Proposition 2 For the distortion minmazvar we may express RW AVaR as

RWAVaR = E |CVaR (B™") + ( - 1) CVaR (1 - B'")

B
where B is Beta(1,n) distributed.

Proof. See Appendix. m
Employing market close data on bid and ask prices of options on single
stocks one may estimate five parameters each day for each stock. For stock 4,

11



we then have a time series of estimates for oy, Vi, Oit, Vir, Mi- Again we take
smoothed estimates for the computation of RW AV aR;; for a position in each
of a set of K specified options for £k = 1,--- , K. The sum over k is the value
RW AV aR;;. The calculations are illustrated for a hypothetical portfolio in op-
tions. For the spot at 100, the option strikes are 80,90,100,110 and 120. The
option maturities are .25, .5 and 1.0. Interest rates and dividend yields are set at
zero. The underlying stock tickers are BAC, GS, JPM and W FC. Recognizing
that regulatory acceptability is stricter than what would be reflected by market
spreads we multiplied the estimated stress parameter n by 10 in the computa-
tion of capital requirements based on RW AVaR. Other multiples could easily
be entertained and one may attempt to calibrate the multiple to Basel levels
of risk weights for different asset classes. We leave for future research a finer
determination of such multiples.

Table 4 presents the results for the four banks. The coefficient for excess
kurtosis or the parameter v, is positive reflecting tail weightedness for all ex-
cepting JPM where it is negative and possibly associated with peakedness. Vol
spreads given by the parameter v have a negative effect on RW AV aR in all four
cases. Procyclicality is observed for BAC and G'S with a positive coefficient for
the lagged index while JPM and WFC are countercyclical, with a negative
coefficient for the lagged index.

For the purpose of studying the effects of variations in bid ask spreads on
capital requirements we take option data on the exchange traded fund SPY that
tracks the SPX and has bid and ask price data on many options daily. The
average number of options is over 500 in the moneyness range for strikes within
30% of the spot for maturities between a month and two and a half years. We
estimated the five parameter model that now also includes the stress parameter
7, each day. We then applied the same procedure for capital computations for a
long position in the SPX index and then regressed the capital requirements on
the five parameters, the lagged SPX and its square. The time period covered
was October 22 2007 to December 23 2011. The R? of this regression was 98.84%
and the coefficients and t-statistics are presented in Table 5. We observe the
significance of procyclicality.

TABLE 5
SPX capital requirement regression results

Parameters as Explanatory Variables

const. o v 0 vy i SPX SPX?
Coefficient —31.23 16.66 1.89 —49.85 —3.04 598 27.67 —11.85
t-statistic =~ —18.98 4.82  6.18 —15.67 —2.18 8546 13.33 —13.01

5 Remark on Risk Neutral vs Historical VaR

One may compare risk neutral VaR exceedances with those under the physical
or real world probability. Under a simple model of Gaussian log returns with a
mean return of p and volatility o the physical VaR, for a log asset level of x is

12



given by

VaR, = e!'—¢€”

while for a risk neutral volatility of o and a log asset level  we have

Tafr = 1-¢F
~ 52
N <x t2> _ q~
o
So
o2
VaR, = exp(u)—exp (,u -5t UN_l(q)>
and
— 52
VaR; = 1—exp (—2 + 5N_1(@)>

For the physical parameter setting u = .06, 0 = .15 and with risk neutral ¢ = .25
we have

VaR,m = .3212
VG.R.()l = .4582

Proceeding risk neutrally we observe that the one percent risk neutral level is
x = —.4582 or a loss of 45.82 on a 100 dollar asset level. The physical proba-
bility of exceeding this loss level computed in accordance with equation (3) is
q = .00036 or 3.6 in ten thousand. In the study conducted by Pérignon, Deng
and Wang (2006) there was an expected exceedance of 74 at a one percent level
with approximately 7400 days covered in the sample period. The observed ex-
ceedances are more in line with the use of risk neutral as opposed to the physical
loss points. The observed exceedance was only 2 reflecting a probability of just
2.7 in ten thousand. This probability is closer to the risk neutral probability of
3.6 in ten thousand than it is to the physical one percent level, suggesting that
markets may be determining their loss points using risk neutral calculations in
place of the physical measure. In fact if the risk neutral volatility is raised to
0.26 we have ‘//_(;]/%_01 = 47.20 and the physical probability of this exceedance is
2.6 in ten thousand or within a point of what was observed. Hence we contend
that it is the use of risk neutral probabilities and volatilities that explains the
observed difference in exceedances.

6 Conclusion

Bank internal models for capital adequacy purposes have been approved for some
time and regulators face issues of model approval. A public domain analysis of
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the performance of such models is thereby necessitated. This paper reports
on an investigation conducted using forward looking risk neutral probabilities
extracted from option prices at an aggregate level from options on the S&P 500
index and at a disaggregate level for a benchmark portfolio of options on four
bank stocks.

At the aggregate level, in addition to VaR and CVaR we analyse the new
measure termed RW AV aR that was proposed in Carr, Madan and Vicente Al-
varez (2011). The new measure allows for a leveraging of information contained
in bid and ask prices and the study at the disaggregated level reports on this
potential. Capital measures along these risk neutral lines are observed to be
sensitive to volatility, the volatility of volatility, the skewness of return distrib-
utions and the volatility spread across horizons. Movements in bid ask spreads
also strongly influence capital requirements. Additionally there is a potential for
procyclicality to be built into the requirements. Further avenues for enhancing
procyclicality remains an important research question.
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Appendix

Proof of Proposition 1. It is shown in Carr, Madan, and Vicente Alvarez (2011)
that

a(X)—bX)=m —I—/O K(u)dG(u)

where m is the median, G is the inverse distribution function and

for

K(u) =%¥(u) +¥(1 —u) -1

We wish to relate this capital to an integral of CVaRx that is defined as

G(u)
CVaRx(u) = —l/ xf(x)dz

u

— 00

a random variable X with density f(z).

15



Consider the integral

/OlL(u)CVaRx(u)du = —/OlL(u)l/_iu) o f (z)dzdu

u

= —/O:Oxf(a:)/;(m) #dudm

H(u) = /Ou/vl #dwdv

1 [e9)
/ L(u)CVaRx(u)du = / xd (H(F(x))).
0

Define H(u) by

and observe that

- / G (u)d(H ()

‘We now write

1

1 1/2
/0 Glu)d(H(u)) = / G(u)d(H (u)) + /1/2G<u>d<H<u>>

1/2

G(1/2)H(1/2) —/0 H(u)dG(u)

+ G(1/2)(1 - H(1/2)) + /1/2(1 — H(u))dG(u)
= [ (e = W) G

For RW AV aR to be an integral of CVaR we then require that

K(u)=- (1u>1/2 — H(u))

or

K'(u) = H'(u)
U'(u) —V'(1—u) = H(u)
_ /1 L)
whereby we get that
U (u) + 0" (1 —u) = —#
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L(u) = —u (¥"(u) + ¥"(1 - u))

It follows that
/0 ' L(u)OVaRx (u)du = /O " () 4 V(1 — 0)) OV aR (w)du
or that
RWAVaR = — /0 (U + U1 — ) OV (u)d

The expression for VaR follows on writing CVaR in terms of VaR and
changing the order of integration.

2. Details for the VGSSD model. The risk neutral law for the stock at time
t is given by
S(t) =8(0)exp ((r —q)t +w(t) + X(t))

where

(@)

xit) 2 ox

and

X =0G+oVGZ

for Z a standard normal variate and G an independent gamma variate with
unit mean, variance v and density

1 1, T
f(z) = WJ} exp (—;) .

The convexity correction w(t) satisfies

exp(—w(t)) = Elexp (X ()],

3. Closed forms for bid and ask prices of put and call options. It is shown
in Cherny and Madan (2010) that bid and ask prices Cy(K,t), Co (K, t) for call
options and Py (K, t), P,(K,t) for put options for strike K on a stock with risk
neutral distribution Fi(s) = P(S(t) < s) may be obtained for a distortion ¥ (u)
as follows.

(K1) = /:uwxs)))ds

Co(K,t) = / W1 — Fy(s))ds

KK
I A (R ONTE
P(K,t) = /K



4. Proof of Proposition 2. By Proposition 1 we have that
1
RWAVaR = — / w (U (w) + (1 — u)) CVaR(u)du
0

For the specific distortion of minmaxvar we have that

() = (1 — )1y
(W) = - )
Substituting this expression for ¥”(u) and changing variables to z = uT
yields

! 1
RWAVaR = / [CVaR(zH") + (Zl-i-n - 1) CVaR (1 - 21“7)} n(l —2)""tdz
0

1 7
= E [CV@R(BH'") + (Bl+n - 1) CVaR(1—- B'f 7)} )

for B distributed Beta(1,n).
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TABLE 1

Regression Results of Capital Candidates on Risk and Lagged Index

Full Period Results 1996-2012

Capital Candidate

VaR CVaR RWAVaR

Constant 28.4121 31.8459 -0.6094
63.21 108.43 -0.88

sigma 23.0184 16.1676 29.8543
22.29 23.96 18.87

nu 0.4886 0.7274 -2.1425
4.80 10.95 -13.75

theta -13.9865 -12.2367 -5.7701
-19.63 -26.28 -5.29

gamma 2.9787 2.4867 6.7900
7.78 9.93 11.57

Spx 1.2921 0.6532 12.8004
1.42 1.10 9.17

Spx”2 -0.5236 -0.3058 -6.0211
-1.25 -1.12 -9.40

RSQ 0.8915 0.9214 0.7660




TABLE 2

Regression Results of Capital Candidates on Risk and Lagged Index

First Sub Period Results 1996-2004

Capital Candidate

VaR CVaR RWAVaR

Constant 26.1541 30.5047 5.1744
77.81 120.29 14.11

sigma 17.8004 12.4427 28.9694
16.50 15.29 24.61

nu 0.8345 0.9702 -1.6255
10.71 16.51 -19.12

theta -12.7971 -11.7139 -3.2803
-17.00 -20.63 -3.99

gamma 1.8245 1.6409 0.7543
6.12 7.29 2.32

SpX 8.3840 5.0895 6.9094
11.64 9.36 8.79

Spx”2 -3.4816 -2.1351 -2.8371
-10.38 -8.43 -7.75

RSQ 0.9392 0.9438 0.9140




TABLE 3

Regression Results of Capital Candidates on Risk and Lagged Index

Second Sub Period Results 2004-2011

Capital Candidate

VaR CVaR RWAVaR

Constant 30.8531 34.0521 11.7625
22.52 38.32 11.09

sigma 0.6871 2.5783 5.1491
0.31 1.82 3.04

nu 2.4548 1.9307 0.0460
11.35 13.76 0.27

theta -30.5133 -22.1237 -23.7059
-21.42 -23.95 -21.50

gamma 5.9453 4.2539 3.7412
9.33 10.29 7.58

SpX -6.0011 -4.8126 -7.3002
-2.83 -3.51 -4.46

Spx”2 2.0196 1.6236 2.2653
2.30 2.85 3.34

RSQ 0.9186 0.9416 0.9469




Table 4

RWAVaR Risk Analysis for Four Bank Option Portfolios

BAC GS JPM WFC

constant -1.4766 -98.5366 83.9068 42.8607
-0.16 -10.37 10.34 2.90

sigma 19.2570 27.7649 30.9027 25.0823
10.19 14.21 19.41 14.85

nu 8.1306 16.6155 -2.3431 17.0498
9.47 18.54 -3.54 23.90

theta -17.8014 -45.4986 -12.6240 -38.8834
-36.77 -43.33 -19.17 -30.00

gamma -55.7912 -49.8347 -27.4779 -31.2926
-13.16 -8.62 -7.39 -6.19

eta 0.8969 0.8537 0.8766 0.8626
78.94 150.10 109.85 125.22

SpX 0.0378 0.1414 -0.1222 -0.0837
2.82 9.41 -10.00 -4.01

Spx”2 2.69E-05 6.24E-05 4.08E-05 2.11E-05
-4.72 -9.78 7.95 2.49

Rsquare 0.9723 0.9824 0.9723 0.9893




