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1 Introduction

Credit risk represents by far the biggest risk in the activities of a traditional
bank. In particular, during recession periods financial institutions loose enor-
mous amounts as a consequence of bad loans and default events. Traditionally
the risk arising from a loan contract could not be transferred and remained
in the books of the lending institution until maturity. This has changed com-
pletely since the introduction of credit derivatives such as credit default swaps
(CDSs) and collaterized debt obligations (CDOs) roughly fifteen years ago.
The volume in trading these products at the exchanges and directly between
individual parties (OTC) has increased enormously. This success is due to the
fact that credit derivatives allow the transfer of credit risk to a larger commu-
nity of investors. The risk profile of a bank can now be shaped according to
specified limits, and concentrations of risk caused by geographic and industry
sector factors can be reduced.

However, credit derivatives are complex products, and a sound risk-ma-
nagement methodology based on appropriate quantitative models is needed
to judge and control the risks involved in a portfolio of such instruments.
Quantitative approaches are particularly important in order to understand the
risks involved in portfolio products such as CDOs. Here we need mathematical
models which allow to derive the statistical distribution of portfolio losses.
This distribution is influenced by the default probabilities of the individual
instruments in the portfolio, and, more importantly, by the joint behaviour
of the components of the portfolio. Therefore the probabilistic dependence
structure of default events has to be modeled appropriately.

In this paper we use two different approaches for modeling dependence.
To begin with, we extend the factor model approach of Vasiček [32, 33] by
using more sophisticated distributions for the factors. Due to their greater
flexibility these distributions have been successfully used in several areas of
finance (see e.g. [9, 10, 11]). As shown in the present paper, this approach
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leads to a substantial improvement of performance in the pricing of synthetic
CDO tranches. Moreover, in the last section we introduce a dynamic Markov
chain model for the default state of a credit portfolio and discuss the pricing
of CDO tranches for this model.

2 CDOs: Basic concepts and modeling approaches

A collateralized debt obligation (CDO) is a structured product based on an
underlying portfolio of reference entities subject to credit risk, such as cor-
porate bonds, mortgages, loans or credit derivatives. Although several types
of CDOs are traded in the market which mainly differ in the content of the
portfolio and the cash flows between counterparties, the basic structure is the
same. The originator (usually a bank) sells the assets of the portfolio to a
so-called special purpose vehicle (SPV), a company which is set up only for
the purpose of carrying out the securitization and the necessary transactions.
The SPV does not need capital itself, instead it issues notes to finance the
acquisition of the assets. Each note belongs to a certain loss piece or tranche
after the portfolio has been divided into a number of them. Consequently
the portfolio is no longer regarded as an asset pool but as a collateral pool.
The tranches have different seniorities; the first loss piece or equity tranche has
the lowest, followed by junior mezzanine, mezzanine, senior and finally super-
senior tranches. The interest payments the SPV has to make to the buyer of a
CDO tranche are financed from the cash flow generated by the collateral pool.
Therefore the performance or the default risk of the portfolio is taken over by
the investors. Since all liabilities of the SPV as a tranche seller are funded by
proceeds from the portfolio, CDOs can be regarded as a subclass of so-called
asset-backed securities. If the assets consist mainly of bonds resp. loans, the
CDO is also called collateralized bond obligation (CBO) resp. collateralized
loan obligation (CLO). For a synthetic CDO which we shall discuss in more
detail below, the portfolio contains only credit default swaps. The motivation
to build a CDO is given by economic reasons:

• By selling the assets to the SPV, the originator removes them from his
balance sheet and therefore he is able to reduce his regulatory capital. The
capital which is set free can then be used for new business opportunities.

• The proceeds from the sale of the CDO tranches are typically higher than
the initial value of the asset portfolio because the risk-return profile of the
tranches is more attractive for investors. This is both the result from and
the reason for slicing the portfolio into tranches and the implicit collation
and rebalancing hereby. Arbitrage CDOs are mainly set up to exploit this
difference.

In general, CDO contracts can be quite sophisticated because there are no
regulations for the compilation of the reference portfolio and its tranching or
the payments to be made between the parties. The originator and the SPV
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can design the contract in a taylormade way, depending on the purposes they
want to achieve. To avoid unnecessary complications, we concentrate in the
following on synthetic CDOs which are based on a portfolio of credit default
swaps.

2.1 Structure and payoffs of CDSs and synthetic CDOs

As mentioned before, the reference portfolio of a synthetic CDO consists en-
tirely of credit default swaps (CDSs). These are insurance contracts protecting
from losses caused by default of defaultable assets. The protection buyer A pe-
riodically pays a fixed premium to the protection seller B until a prespecified
credit event occurs or the contract terminates. In turn, B makes a payment
to A that covers his losses if the credit event has happened during the life-
time of the contract. Since there are many possibilities to specify the default
event as well as the default payment, different types of CDSs are traded in
the market, depending on the terms the counterparties have agreed on. The
basic structure is shown in Figure 1. Throughout this article we will make the
following assumptions: The reference entity of the CDS is a defaultable bond
with nominal value L, and the credit event is the default of the bond issuer.
If default has happened, B pays (1−R)L to A where R denotes the recovery
rate. On the other side A pays quarterly a fixed premium of 0.25rCDSL where
rCDS is the annualized fair CDS rate. To determine this rate explicitly, we fix
some notation:

r is the riskless interest rate, assumed to be constant over the lifetime
[0, T ] of the CDS,

u(t) is the discounted value of all premiums paid up to time t when the
annualized premium is standardized to 1,

G1(t) is the distribution function of the default time T1 with corresponding
density g1(t) (its existence will be justified by the assumptions in
subsequent sections).

The expected value of the discounted premiums (premium leg) can then be
written as

PL(rCDS ) = rCDS L

∫ T

0

u(t)g1(t) dt + rCDS Lu(T )(1−G1(T )) .

The expected discounted default payment (default leg) is given by
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Fig. 2. Schematic representation of the payments in a synthetic CDO. The choice
of the attachment points corresponds to DJ iTraxx Europe standard tranches.

D = (1−R)L
∫ T

0

g1(t)e−rt dt .

The no-arbitrage condition PL(rCDS ) = D then implies

rCDS =
(1−R)

∫ T

0
g1(t)e−rt dt

∫ T

0
u(t)g1(t) dt + u(T )(1−G1(T ))

=
D

PL(1)
. (1)

To explain the structure and the cash flows of a synthetic CDO assume that
its reference portfolio consists of N different CDSs with the same notional
value L. We divide this portfolio in subsequent tranches. Each tranche covers
a certain range of percentage losses of the total portfolio value NL defined
by lower and upper attachment points Kl, Ku ≤ 1. The buyer of a tranche
compensates as protection seller for all losses that exceed the amount of KlNL
up to a maximum of KuNL. On the other hand the SPV as protection buyer
has to make quarterly payments of 0.25rcVt, where Vt is the notional value of
the tranche at payment date t. Note that Vt starts with NL(Ku −Kl) and is
reduced by every default that hits the tranche. rc is the fair tranche rate. See
also Figure 2.

In recent years a new and simplified way of buying and selling CDO
tranches has become very popular, the trading of single index tranches. For
this purpose standardized portfolios and tranches are defined. Two counter-
parties can agree to buy and sell protection on an individual tranche and
exchange the cash flows shown in the right half of Figure 2. The underlying
CDS portfolio however is never physically created, it is merely a reference
portfolio from which the cash flows are derived. So the left hand side of Fig-
ure 2 vanishes in this case, and the SPV is replaced by the protection buyer.
The portfolios for the two most traded indices, the Dow Jones CDX NA IG
and the Dow Jones iTraxx Europe, are composed of 125 investment grade US
and European firms respectively. The index itself is nothing but the weighted
credit default swap spread of the reference portfolio. In Sections 2.2 and 3.1
we shall derive the corresponding default probabilities. We will use market
quotes for different iTraxx tranches and maturities to calibrate our models
later in Sections 3.2 and 4.2.
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In the following we denote the attachment points by 0 = K0 < K1 < . . . <
Km ≤ 1 such that the lower and upper attachment points of tranche i are
Ki−1 and Ki respectively. Suppose for example that (1 − R)j = Ki−1N and
(1 − R)k = KiN for some j < k, j, k ∈ N. Then the protection seller B of
tranche i pays (1−R)L if the (j+1)st reference entity in the portfolio defaults.
For each of the following possible k−j−1 defaults the protection buyer receives
the same amount from B. After the kth default occurred the outstanding
notional of the tranche is zero and the contract terminates. However, the losses
will usually not match the attachment points. In general, some of them are
divided up between subsequent tranches: If (j−1)(1−R)

N < Ki < j(1−R)
N for some

j ∈ N, then tranche i bears a loss of NL
(
Ki − (j−1)(1−R)

N

)
(and is exhausted

thereafter) if the jth default occurs. The overshoot is absorbed by the following
tranche whose outstanding notional is reduced by NL

( j(1−R)
N −Ki

)
. We use

the following notation:

Ki−1, Ki are the lower/upper attachment points of tranche i,
Zt is the relative amount of CDSs which have defaulted up to time t,

expressed as a fraction of the total number N ,
Li

t = min[(1−R)Zt,Ki]−min[(1−R)Zt,Ki−1] is the loss of tranche i
up to time t, expressed as a fraction of the total notional value NL,

ri is the fair spread rate of tranche i,
0 = t0 < · · · < tn are the payment dates of protection buyer and seller,

β(t0, tk) is the discount factor for time tk.

Remark 1. Under the assumption of a constant riskless interest rate r we
would have β(t0, tk) = e−rtk . Since this assumption is too restrictive one
uses zero coupon bond prices for discounting instead. Therefore β(t0, tk) will
denote the price at time t0 of a zero coupon bond with maturity tk.

The assumption that all CDSs have the same notional value may seem
somewhat artificial, but it is fulfilled for CDOs on standardized portfolios like
the Dow Jones CDX or the iTraxx Europe.

With this notation the premium as well as the default leg of tranche i can
be expressed as

PLi(ri) =
n∑

k=1

(tk − tk−1)β(t0, tk) ri E
[(

Ki −Ki−1 − Li
tk

)
NL

]
,

(2)

Di =
n∑

k=1

β(t0, tk)E
[(

Li
tk
− Li

tk−1

)
NL

]
,

where E[·] denotes expectation. For the fair spread rate one obtains

ri =

∑n
k=1 β(t0, tk)

(
E

[
Li

tk

]− E
[
Li

tk−1

])
∑n

k=1(tk − tk−1)β(t0, tk)
(
Ki −Ki−1 − E

[
Li

tk

]) . (3)
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Remark 2. To get arbitrage-free prices, all expectations above have to be taken
under a risk neutral probability measure, which is assumed implicitly. One
should be aware that risk neutral probabilities cannot be estimated from his-
torical default data.

Since payment dates and attachment points are specified in the CDO contract
and discount factors can be obtained from the market, the remaining task is
to develop a realistic portfolio model from which the risk neutral distribution
of Zt can be derived, i.e. we need to model the joint distribution of the default
times T1, . . . , TN of the reference entities.

2.2 Factor models with normal distibutions

To construct this joint distribution, the first step is to define the marginal
distributions Qi(t) = P (Ti ≤ t). The standard approach, which was proposed
in [21], is to assume that the default times Ti are exponentially distributed,
that is, Qi(t) = 1−e−λit. The default intensities λi can be estimated from the
clean spreads ri

CDS/(1−R) where ri
CDS is the fair CDS spread of firm i which

can be derived using formula (1). In fact, the relationship λi ≈ ri
CDS/(1−R)

is obtained directly from (1) by inserting the default density g1(t) = λie
−λit

(see [22, section 9.3.3]).
As mentioned before, the CDX and iTraxx indices quote an average CDS

spread for the whole portfolio in basis points (100bp = 1%), therefore the
market convention is to set

λi ≡ λa =
sa

(1−R)10000
(4)

where sa is the average CDX or iTraxx spread in basis points. This implies that
all firms in the portfolio have the same default probability. One can criticize
this assumption from a theoretical point of view, but it simplifies and fastens
the calculation of the loss distribution considerably as we will see below. Since
λa is obtained from data of derivative markets, it can be considered as a risk
neutral parameter and therefore the Qi(t) can be considered as risk neutral
probability distributions.

The second step to obtain the joint distribution of the default times is to
impose a suitable coupling between the marginals. Since all firms are subject
to the same economic environment and many of them are linked by direct
business relations, the assumption of independence of defaults between dif-
ferent firms obviously is not realistic. The empirically observed occurrence of
disproportionally many defaults in certain time periods also contradicts the
independence assumption. Therefore the main task in credit portfolio mod-
eling is to implement a realistic dependence structure which generates loss
distributions that are consistent with market observations. The following ap-
proach goes back to [32] and was motivated by the Merton model [25].
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For each CDS in the CDO portfolio we define a random variable Xi as
follows:

Xi :=
√

ρM +
√

1− ρZi, 0 ≤ ρ < 1, i = 1, . . . , N, (5)

where M,Z1, . . . , ZN are independent and standard normally distributed. Ob-
viously Xi ∼ N(0, 1) and Corr(Xi, Xj) = ρ, i 6= j. Xi can be interpreted as
state variable for the firm that issued the bond which CDS i secures. The
state is driven by two factors: the systematic factor M represents the macroe-
conomic environment to which all firms are exposed, whereas the idiosyncratic
factor Zi incorporates firm specific strengths or weaknesses.

To model the individual defaults, we define time-dependent thresholds by

di(t) := Φ−1(Qi(t))

where Φ−1(x) denotes the inverse of the standard normal distribution function
or quantile function of N(0, 1). Observe that the di(t) are increasing because so
are Φ−1 and Qi. Therefore we can define each default time Ti as the first time
point at which the corresponding variable Xi is smaller than the threshold
di(t), that is

Ti := inf{t ≥ 0 |Xi ≤ di(t)}, i = 1, . . . , N. (6)

This also ensures that the Ti have the desired distribution, because

P (Ti ≤ t) = P
(
Xi ≤ Φ−1(Qi(t))

)
= P

(
Φ(Xi) ≤ Qi(t)

)
= Qi(t),

where the last equation follows from the fact that the random variable Φ(Xi)
is uniformly distributed on the interval [0, 1]. Moreover, the leftmost equation
shows that Ti

d= Q−1
i (Φ(Xi)), so the default times inherit the dependence

structure of the Xi. Since the latter are not observable, but serve only as
auxiliary variables to construct dependence, such models are termed ‘latent
variable’ models. Note that by (4) we have Qi(t) ≡ Q(t) and thus di(t) ≡ d(t),
therefore we omit the index i in the following.

Remark 3. Instead of inducing dependence by latent variables that are linked
by the factor equation (5), one can also define the dependence structure of the
default times more directly by inserting the marginal distribution functions
into an appropriately chosen copula. We do not discuss this approach here
further, but give some references at the end of Section 2.3

To derive the loss distribution let At
k be the event that exactly k defaults

have happened up to time t. From (6) and (5) we get

P (Ti < t |M) = P (Xi < d(t) |M) = Φ

(
d(t)−√ρM√

1− ρ

)
.

Since the Xi are independent conditional on M , the conditional probability
P (At

k|M) equals the probability of a binomial distribution with parameters
N and p = P (Ti < t |M):
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P (At
k|M) =

(
N
k

)
Φ

(
d(t)−√ρM√

1− ρ

)k(
1− Φ

(
d(t)−√ρM√

1− ρ

))N−k

.

The probability that at time t the relative number of defaults Zt does not
exceed q is

FZt
(q) =

[Nq]∑

k=0

P (At
k)

=

∞∫

−∞

[Nq]∑

k=0

(
N
k

)
Φ

(
d(t)−√ρu√

1− ρ

)k(
1− Φ

(
d(t)−√ρu√

1− ρ

))N−k

dPM (u) .

If the portfolio is very large, one can simplify FZt
further using the following

approximation which was introduced in [33] and which is known as large
homogeneous portfolio (LHP) approximation. Let pt(M) := Φ

(
d(t)−√ρM√

1−ρ

)

and Gpt
be the corresponding distribution function, then we can rewrite FZt

in the following way:

FZt(q) =

1∫

0

[Nq]∑

k=0

(
N
k

)
sk(1− s)N−k dGpt(s). (7)

Applying the LHP approximation means that we have to determine the be-
haviour of the integrand for N → ∞. For this purpose suppose that Yi

are independent and identically distributed (iid) Bernoulli variables with
P (Yi = 1) = s = 1 − P (Yi = 0). Then the strong law of large numbers
states that ȲN = 1

N

∑N
i=1 Yi → s almost surely which implies convergence of

the distribution functions FȲN
(x) → 1[0,x](s) pointwise on R \ {s}. For all

q 6= s we thus have

[Nq]∑

k=0

(
N
k

)
sk(1− s)N−k = P

(
N∑

i=1

Yi ≤ Nq

)
= P

(
ȲN ≤ q

) −→
N→∞

1[0,q](s).

Since the sum on the left hand side is bounded by 1, by Lebesgue’s theorem
we get from (7)

FZt(q) ≈
∫ 1

0

1[0,q](s) dGpt(s) = Gpt(q) = P

(
−
√

1− ρΦ−1(q)− d(t)√
ρ

≤ M

)

= Φ

(√
1− ρΦ−1(q)− d(t)√

ρ

)
(8)

where in the last equation the symmetry relation 1 − Φ(x) = Φ(−x) has
been used. This distribution is, together with the above assumptions, the
current market standard for the calculation of CDO spreads according to
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equation (3). Since the relative portfolio loss up to time t is given by (1−R)Zt,
the expectations E

[
Li

tk

]
contained in (3) can be written as follows:

E
[
Li

tk

]
=

∫ Ki
1−R∧1

Ki−1
1−R ∧1

(1−R)
(
q−Ki−1

1−R

)
dFZtk

(q)+(Ki−Ki−1)
[
1−FZtk

(
Ki

1−R∧1
)]

.

(9)

2.3 Deficiencies and extensions

The pricing formula obtained from (3), (8) and (9) contains one unknown
quantity: the correlation parameter ρ. This parameter has to be estimated
before one can derive the fair rate of a CDO tranche. A priori it is not clear
which data and which estimation procedure one could use to get ρ. In the Mer-
ton approach, defaults are driven by the evolution of the asset value of a firm.
Consequently the dependence between defaults is derived from the depen-
dence between asset values. The latter cannot be observed directly, therefore
some practitioners have used equity correlations, which can be estimated from
stock price data. A more direct and plausible alternative would be to infer
correlations from historical default data, but since default is a rare event, this
would require data sets over very long time periods which are usually not
available.

With the development of a liquid market for single index tranches in the
last years, a new source of correlation information has arisen: the implied
correlations from index tranche prices. Similar to the determination of implied
volatilities from option prices by inverting the Black–Scholes formula, one can
invert the above pricing formula and solve numerically for the correlation
parameter ρ which reproduces the quoted market price. This provides also a
method to examine if the model and its assumptions are appropriate. If this
is the case, the correlations derived from market prices of different tranches of
the same index should coincide. However, in reality one observes a so-called
correlation smile: the implied correlations of the equity and (super-)senior
tranches are typically much higher than those of the mezzanine tranches.
See Figure 3 for an example. The smile indicates that the classical model is
not flexible enough to generate realistic dependence structures. This is only
partly due to the simplifications made by using the LHP approach. The deeper
reason for this phenomenon lies in the fact that the model with normal factors
strongly underestimates the probabilities of joint defaults. This has led to
severe mispricings and inadequate risk forecasts in the past. The problem
became evident in the so-called correlation crisis in May 2005: the factor
model based on normal distributions was unable to follow the movement of
market quotes occuring in reaction to the downgrading of Ford and General
Motors to non-investment grade.

A number of different approaches for dealing with this problem have been
investigated. A rather intuitive extension to remedy the deficiencies of the
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Fig. 3. Implied correlations calculated from the prices of DJ iTraxx Europe standard
tranches at November 13, 2006, for different maturities T .

normal factor model which we shall exploit in Section 3, is to allow for factor
distributions which are much more flexible than the standard normal ones.
Different factor distributions do not only change the shape of FZt , but also
have a great influence on the so-called factor copula implicitly contained in the
joint distribution of the latent variables. In fact, the replacement of the normal
distribution leads to a fundamental modification of the dependence structure
which becomes much more complex and can even exhibit tail-dependence. A
necessary condition for the latter to hold is that the distribution of the sys-
tematic factor M is heavy tailed. This fact was proven in [24]. The first paper
in which alternative factor distributions are used is [17] where both factors
are assumed to follow a Student t-distribution with 5 degrees of freedom. In
[19], Normal Inverse Gaussian distributions are applied for pricing synthetic
CDOs, and in [1] several models based on Gamma, Inverse Gaussian, Variance
Gamma, Normal Inverse Gaussian and Meixner distributions are presented.
In the last paper the systematic and idiosyncratic factors are represented by
the values of a suitably scaled and shifted Lévy process at times ρ and 1− ρ.

Another way to extend the classical model is to implement stochastic cor-
relations and random factor loadings. In the first approach which was de-
veloped in [15], the constant correlation parameter ρ in (5) is replaced by
a random variable taking values in [0, 1]. The cumulative default distribu-
tion can then be derived similarly as before, but one has to condition on
both, the systematic factor and the correlation variable. The concept of ran-
dom factor loadings was first published in [2]. There the Xi are defined by
Xi := mi(M) + σi(M)Zi with some deterministic functions mi and σi. In the
simplest case Xi = m + (l1{M<e} + h1{M≥e})M + νZi where l, h, e ∈ R are
additional parameters and m, ν are constants chosen such that E[Xi] = 0 and
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Var[Xi] = 1. Further information and numerical details for the calibration of
such models to market data can be found in [8].

As already mentioned in Remark 3, other approaches use copula models
to define the dependence between the default times Ti. The concept of cop-
ulas was introduced in probability theory by Sklar [31]. A very useful and
illustrative introduction to copulas and their application in risk management
can be found in [22, chapter 5], for a thorough theoretical treatment, we refer
to [26]. The first papers where copulas were used in credit risk models are
[21] and [30]. A recent approach based on Archimedean copulas can be found
in [5]. The pricing performance of models with Clayton and Marshall–Olkin
copulas was investigated and compared with some other popular approaches
in [7]. There the prices calculated from the Clayton copula model showed a
slightly better fit to the market quotes, but they were still relatively close
to those generated by the Gaussian model. The Marshall–Olkin copulas per-
formed worse, since the deviations from market prices were greater than those
of other models considered.

Alternatively, it is possible to come up with stochastic models for the
dynamic evolution of the default state of the portfolio (instead of modeling
just the distribution of the default times as seen from a given point in time
t) and to look for dynamic models that can generate correlation skews. An
example of this line of research is discussed in Section 4.

3 Calibration with advanced distributions

The factor distributions we implement to overcome the deficiencies mentioned
above belong to the class of generalized hyperbolic distributions (GH) which
was introduced in [4]. In the general case, their densities are given by

dGH (λ,α,β,δ,µ)(x) = a(λ, α, β, δ, µ)
(
δ2 + (x− µ)2

)(λ− 1
2 )/2

eβ(x−µ)

(10)
×Kλ− 1

2

(
α
√

δ2 + (x− µ)2
)

with the norming constant

a(λ, α, β, δ, µ) =
(α2 − β2)

λ
2√

2παλ− 1
2 δλKλ(δ

√
α2 − β2 )

.

Kν denotes the modified Bessel function of the third kind with index ν and
GH (λ, α, β, δ, µ) the corresponding probability distribution. The influence of
the parameters is as follows: α > 0 determines the shape, 0 ≤ |β| < α the
skewness, µ ∈ R is a location parameter and δ > 0 serves for scaling. λ ∈ R
characterizes certain subclasses and has considerable influence on the size of
mass contained in the tails which can be seen from the asymptotic behaviour
of the densities: dGH (λ,α,β,δ,µ)(x) ∼ |x|λ−1e−α|x|+βx for |x| → ∞. See also
Figure 4. Generalized hyperbolic distributions have already been shown to
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be a very useful tool in various fields of mathematical finance. An overview
over different applications can be found in [9]. Let us mention some special
subclasses and limiting cases which are of particular interest and which we
will use later to calibrate the iTraxx data:

For λ = −0.5 one obtains the subclass of Normal Inverse Gaussian distri-
butions (NIG) with densities

dNIG(α,β,δ,µ)(x) =
αδ

π

K1

(
α
√

δ2 + (x− µ)2
)

√
δ2 + (x− µ)2

eδ
√

α2−β2+β(x−µ),

whereas λ = 1 characterizes the subclass of hyperbolic distributions (HYP)
which was the first to be applied in finance in [10] and

dHYP(α,β,δ,µ)(x) =

√
α2 − β2

2αδK1(δ
√

α2 − β2)
e−α

√
δ2+(x−µ)2+β(x−µ).

For positive λ, Variance Gamma distributions (VG), which were introduced
in full generality in [23], can be obtained as weak limits of GH distributions.
If λ > 0 and δ → 0, then the density (10) converges pointwise to

dVG(λ,α,β,µ)(x) =
(α2 − β2)λ |x− µ|λ− 1

2

√
π(2α)λ− 1

2 Γ (λ)
Kλ− 1

2
(α|x− µ|) eβ(x−µ).

However, if λ < 0 and α, β → 0, then (10) converges pointwise to the density
of a scaled and shifted t-distribution with f = −2λ degrees of freedom:

dt(λ,δ,µ)(x) =
Γ (−λ + 1

2 )
δ
√

πΓ (−λ)

(
1 +

(x− µ)2

δ2

)λ− 1
2

, where Γ (λ) =
∫ ∞

0

xλ−1e−xdx.

For a detailed derivation of these limits and their characteristic functions, we
refer to [11].
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Both the skewness and especially the heavier tails increase significantly
the probability of joint defaults in the factor model

Xi =
√

ρM +
√

1− ρZi. (11)

In the following we assume that M, Z1, . . . , ZN are independent as before, but
M ∼ GH (λM , αM , βM , δM , µM ) and all Zi are iid ∼ GH (λZ , αZ , βZ , δZ , µZ)
(including the above limiting cases). Thus the distribution functions of all Xi

coincide. Denote the latter by FX and the distribution functions of M and
of the Zi by FM and FZ , then one can derive the corresponding cumulative
default distribution FZt

analogously as described in Section 2.2 and obtains

FZt(q) ≈ 1− FM

(
F−1

X (Q(t))−√1− ρF−1
Z (q)√

ρ

)
. (12)

Note that this expression cannot be simplified further as in equation (8) since
the distribution of M is in general not symmetric.

Remark 4. As mentioned above, almost all densities of GH distributions pos-
sess exponentially decreasing tails, only the Student t limit distributions have
a power tail. According to the results of [24], the joint distribution of the Xi

will therefore show tail dependence if and only if the systematic factor M is
Student t-distributed.

Further GH (λ, α, β, δ, µ) L−→ N(µ + βσ2, σ2) if α, δ → ∞ and δ/α → σ2,
so the normal factor model is included as a limit in our setting.

3.1 Factor scaling and calculation of quantiles

To preserve the role of ρ as a correlation parameter, we have to standardize
the factor distributions such that they have zero mean and unit variance. In
the general case of GH distributions we fix shape, skewness and tail behaviour
by specifying α, β, λ and then calculate δ̄ and µ̄ that scale and shift the density
appropriately. For this purpose we first solve the equation

1 = Var[GH (λ, α, β, δ, µ)] =
δ2

ζ

Kλ+1(ζ)
Kλ(ζ)

+ β2 δ4

ζ2

(
Kλ+2(ζ)
Kλ(ζ)

− K2
λ+1(ζ)

K2
λ(ζ)

)

with ζ := δ
√

α2 − β2 numerically to obtain δ̄ and then choose µ̄ such that

0 = E[GH (λ, α, β, δ̄, µ̄)] = µ̄ +
βδ̄2

ζ̄

Kλ+1(ζ̄)
Kλ(ζ̄)

, ζ̄ = δ̄
√

α2 − β2.

Since the Bessel functions Kn+1/2, n ≥ 0, can be expressed explicitly in closed
forms, the calculations simplify considerably for the NIG subclass. We have

Var[NIG(α, β, δ, µ)] =
δα2

(α2 − β2)
3
2

, E[NIG(α, β, δ, µ)] = µ +
βδ√

α2 − β2
,
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so the distribution can be standardized by choosing δ̄ = (α2 − β2)
3
2 /α2 and

µ̄ = −β(α2 − β2)/α2.
In the VG limiting case the variance is given by

Var[VG(λ, α, β, µ)] =
2λ

α2 − β2
+

4λβ2

(α2 − β2)2
=: σ2

VG ,

so it would be tempting to use λ as a scaling parameter, but this would mean
to change the tail behaviour which we want to keep fixed. Observing the fact
that a VG distributed random variable XVG equals in distribution the shifted
sum of two Gamma variables, that is,

XVG
d= Γλ,α−β − Γλ,α+β + µ, where dΓλ,σ

(x) =
σλ

Γ (λ)
xλ−1e−σx1[0,∞)(x),

the correct scaling that preserves the shape is ᾱ = σVG α, β̄ = σVG β. Then
µ̄ has to fulfill

0 = E[VG(λ, ᾱ, β̄, µ̄)] = µ̄ +
2λβ̄

ᾱ2 − β̄2
.

The second moment of a Student t-distribution exists only if the number of
degrees of freedom satisfies f > 2, so we have to impose the restriction λ < −1
in this case. Mean and variance are given by

Var[t(λ, δ, µ)] =
δ2

−2λ− 2
and E[t(λ, δ, µ)] = µ,

therefore one has to choose δ̄ =
√−2λ− 2 and µ̄ = 0.

We thus have a minimum number of three free parameters in our general-
ized factor model, namely λM , λZ and ρ if both M and Zi are t-distributed,
up to a maximum number of seven (λM , αM , βM , λZ , αZ , βZ , ρ) if both factors
are GH or VG distributed. If we restrict M and Zi to certain GH subclasses
by fixing λM and λZ , five free parameters are remaining.

Having scaled the factor distributions, the remaining problem is to com-
pute the quantiles F−1

X (Q(t)) which enter the default distribution FZt by equa-
tion (12). Since the class of GH distributions is in general not closed under
convolutions, the distribution function FX is not known explicitly. Therefore
one central task of the project was to develop a fast and stable algorithm for
the numerical calculation of the quantiles of Xi, because simulation techniques
had to be ruled out from the very beginning for two reasons: The default prob-
abilities Q(t) are very small, so one would have to generate a very large data
set to get reasonable quantile estimates, and the simulation would have to
be restarted whenever at least one model parameter has been modified. Since
the pricing formula is evaluated thousands of times with different parameters
during calibration, this procedure would be too time-consuming. Further, the
routine used to calibrate the models tries to find an extremal point by search-
ing the direction of the steepest ascend within the parameter space in each
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optimization step. This can be done successfully only if the model prices de-
pend exclusively on the parameters and not additionally on random effects.
In the latter case the optimizer may behave erratically and will never reach
an extremum.

We obtain the quantiles of Xi by Fourier inversion. Let P̂X , P̂M and P̂Z

denote the characteristic functions of Xi, M and Zi, then equation (11) and
the independence of the factors yield

P̂X(t) = P̂M

(√
ρ t

) · P̂Z

(√
1− ρ t

)
.

With the help of the inversion formula we get a quite accurate approximation
of FX from which the quantiles F−1

X (Q(t)) can be derived. For all possible
factor distributions mentioned above, the characteristic functions P̂M and P̂Z

are well known; see [11] for a derivation and explicit formulas.
In contrast to this approach there are two special settings in which the

quantiles of Xi can be calculated directly. The first one relies on the following
convolution property of the NIG subclass,

NIG(α, β, δ1, µ1) ∗NIG(α, β, δ2, µ2) = NIG(α, β, δ1 + δ2, µ1 + µ2),

and the fact that if Y ∼ NIG(α, β, δ, µ), then aY ∼ NIG
(

α
|a| ,

β
a , δ|a|, µa

)
.

Thus if both M and Zi are NIG distributed and the distribution parameters
of the latter are defined by αZ := αM

√
1− ρ/

√
ρ and βZ = βM

√
1− ρ/

√
ρ,

then it follows together with equation (11) that Xi ∼ NIG
(

αM√
ρ , βM√

ρ , δ̄M√
ρ , µ̄M√

ρ

)
,

where δ̄M and µ̄M are the parameters of the standardized distribution of M
as described before.

In the VG limiting case the parameters α, β and µ behave as above under
scaling, and the corresponding convolution property is

VG(λ1, α, β, µ1) ∗VG(λ2, α, β, µ2) = VG(λ1 + λ2, α, β, µ1 + µ2).

Consequently if both factors are VG distributed and the free parameters of
the idiosyncratic factor are chosen as follows, λZ = λM (1 − ρ)/ρ, αZ = αM ,
βZ = βM , then Xi ∼ VG

(
λM

ρ , ᾱM√
ρ , β̄M√

ρ , µ̄M√
ρ ).

This stability under convolutions, together with the appropriate parameter
choices for the idiosyncratic factor, was used in [19] and all models considered
in [1]. We do not use this approach here because it reduces the number of free
parameters and therefore the flexibility of the factor model. Moreover, in such
a setting the distribution of the idiosyncratic factor is uniquely determined by
the systematic factor, which contradicts the intuitive idea behind the factor
model and lacks an economic interpretation.

3.2 Calibration results for the DJ iTraxx Europe

We calibrate our generalized factor model with market quotes of DJ iTraxx
Europe standard tranches. As mentioned before, the iTraxx Europe index is
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based on a reference portfolio of 125 European investment grade firms and
quotes its average credit spread which can be used to estimate the default
intensity of all constituents according to equation (4). The diversification of
the portfolio always remains the same. It contains CDSs of 10 firms from au-
tomotive industry, 30 consumers, 20 energy firms, 20 industrials, 20 TMTs
(technology, media and telecommunication companies) and 25 financials. In
each sector, the firms with the highest liquidity and volume of trade with
respect to their defaultable assets (bonds and CDSs) are selected. The iTraxx
portfolio is reviewed and updated quarterly. Not only companies that have de-
faulted in between are replaced by new ones, but also those which no longer
fulfill the liquidity and trading demands. Of course, the recomposition affects
future deals only. Once two counterparties have agreed to buy and sell protec-
tion on a certain iTraxx tranche, the current portfolio is kept fixed for them in
order to determine the corresponding cash flows described in Section 2.1. The
names and attachment points of the five iTraxx standard tranches are given
in Figures 2 and 3. For each of them four contracts with different maturities
(3, 5, 7 and 10 years) are available.

The settlement date of the sixth iTraxx series was December 20, 2006, so
the 5, 7, and 10 year contracts mature on December 20, 2011 resp. 2013 and
2016. We consider the market prices of the latter on all standard tranches at
November 13, 2006. For the mezzanine and senior tranches, these equal the
annualized fair spreads ri which can be obtained from equation (3) and are
also termed running spreads. However, the market convention for pricing the
equity tranche is somewhat different: In this case the protection buyer has to
pay a certain percentage s1 of the notional value K1NL as an up-front fee
at the starting time t0 of the contract and a fixed spread of 500bp on the
outstanding notional at t1, . . . , tn. Therefore the premium leg for the equity
tranche is given by

PL1(s1) = s1K1NL + 0.05
n∑

k=1

(tk − tk−1)β(t0, tk)E
[(

K1 − L1
tk

)
NL

]
,

and the no-arbitrage condition PL1(s1) = D1 then implies

s1 =

∑n
k=1β(t0, tk)

(
E

[
L1

tk

]−E
[
L1

tk−1

]− 0.05(tk−tk−1)
(
K1−E

[
L1

tk

]))

K1
. (13)

Since the running spread is set to a constant of 500bp, the varying market
price quoted for the equity tranche is the percentage s1 defining the magnitude
of the up-front fee.

We calibrate our generalized factor model by least squares optimization,
that is, we first specify to which subclass of the GH family the distributions FM

and FZ belong and then determine the correlation and distribution parameters
numerically which minimize the sum of the squared differences between model
and market prices over all tranches. Although our algorithm for computing
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the quantiles F−1
X (Q(t)) allows us to combine factor distributions of different

GH subclasses, we restrict both factors to the same subclass for simplicity
reasons. Therefore in the following table and figures the expression VG, for
example, denotes a factor model where M and the Zi are variance gamma
distributed. The model prices are calculated from equations (3) and (13),
using the cumulative default distribution (12) resp. (8) for the normal factor
model which serves as a benchmark. The recovery rate R which has a great
influence on the expected losses E[Li

tk
] according to equation (9) is always set

to 40%; this is the common market assumption for the iTraxx portfolio.
One should observe that the prices of the equity tranches are usually given

in percent, whereas the spreads of all other tranches are quoted in basis points.
In order to use the same units for all tranches in the objective function to
be minimized, the equity prices are transformed into basis points within the
optimization algorithm. Thus they are much higher than the mezzanine and
senior spreads and therefore react to parameter changes in a more sensitive
way, which amounts to an increased weighting of the equity tranche in the
calibration procedure. This is also desirable from an economical point of view
since the costs for mispricing the equity tranche are typically greater than for
all other tranches.

Remark 5. For the same reason, the normal factor model is usually calibrated
by determining the implied correlation of the equity tranche first and then
using this to calculate the fair spreads of the other tranches. This ensures
that at least the equity price is matched perfectly. To provide a better com-
parison with our model, we give up this convention and also use least squares
estimation in this case. Therefore the fit of the equity tranche is sometimes
less accurate, but the distance between model and market prices is smaller for
the higher tranches instead.

Our calibration results for the 5 and 7 year iTraxx tranches are shown in
Figures 5 and 6. The normal benchmark model performs worst in all cases. The
performance of the t model is comparable with the NIG and HYP models,
whereas the VG model provides the best fit for both maturities. Since the
t model is the only one exhibiting tail dependence (confer Remark 4) but does
not outperform the NIG, HYP and VG models, one may conclude that this
property is negligible in the presence of more flexible factor distributions. This
may also be confirmed by the fact that all estimated GH parameters βM and
βZ are different from zero which implies skewness of the factor distributions.
Furthermore the parameter ρ is usually higher in the GH factor models than
in the normal benchmark model, indicating that correlation is still of some
importance, but has a different impact on the pricing formula because of the
more complex dependence structure.

The VG model even has the potential to fit the market prices of all tranches
and maturities simultaneously with high accuracy, which we shall show below.
However, before that we want to point out that the calibration over differ-
ent maturities requires some additional care to avoid inconsistencies when
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Fig. 5. Comparison of calibrated model prices and market prices of the 5 year
iTraxx contracts.

calculating the default probabilities. As can be seen from Figure 7, the aver-
age iTraxx spreads sa are increasing in maturity and by equation (4) so do
the default intensities λa. This means that the estimated default probabilities
Q(t) = 1 − e−λat of a CDO with a longer lifetime are always greater than
those of a CDO with a shorter maturity. While this can be neglected when
concentrating on just one maturity, this fact has to be taken into account
when considering iTraxx CDOs of different maturities together. Since the un-
derlying portfolio is the same, the default probabilities should coincide during
the common lifetime.
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iTraxx contracts.



Advanced credit portfolio modeling and CDO pricing 19

time in years

sp
re

ad
s 

(a
bs

ol
ut

e 
va

lu
es

)

0 2 4 6 8 10

0.
0

0.
00

1
0.

00
2

0.
00

3
0.

00
4

Fig. 7. Constant iTraxx spreads of November 13, 2006, and fitted Nelson–Siegel
curve r̂NS with parameters β̂0 = 0.0072, β̂1 = −0.0072, β̂2 = −0.0069, τ̂1 = 2.0950.

To avoid these problems we now assume that the average spreads sa =
s(t) are time-dependent and follow a Nelson–Siegel curve. This parametric
family of functions has been introduced in [27] and has become very popular
in interest rate theory for the modeling of yield curves where the task is
the following: Let β(0, tk) denote today’s price of a zero coupon bond with
maturity tk as before, then one has to find a function f (instantaneous forward
rates) such that the model prices β(0, tk) = exp

(− ∫ tk

0
f(t) dt

)
approximate

the market prices reasonably well for all maturities tk. Since instantaneous
forward rates cannot be observed directly in the market, one often uses an
equivalent expression in terms of spot rates: β(0, tk) = exp(−r(tk)tk), where
the spot rate is given by r(tk) = 1

tk

∫ tk

0
f(t) dt. Nelson and Siegel suggested

to model the forward rates by

fNS(β0,β1,β2,τ1)(t) = β0 + β1e
− t

τ1 + β2
t

τ1
e−

t
τ1 .

The corresponding spot rates are given by

rNS(β0,β1,β2,τ1)(t) = β0 + (β1 + β2)
τ1

t

(
1− e−

t
τ1

)
− β2e

− t
τ1 . (14)

In order to obtain time-consistent default probabilities resp. intensities we
replace sa in equation (4) by a Nelson–Siegel spot rate curve (14) that has
been fitted to the four quoted average iTraxx spreads, that is,

λa = λ(t) =
r̂NS (t)

(1−R)10000
, (15)

and Q(t) := 1 − e−λ(t) t. The Nelson–Siegel curve estimated from the iTraxx
spreads of November 13, 2006, is shown in Figure 7. At first glance the differ-
ences between constant and time-varying spreads seem to be fairly large, but
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Tranches Market VG Market VG Market VG

5Y 7Y 10Y

0–3% 13.60% 13.60% 28.71% 28.72% 42.67% 42.67%

3–6% 57.16bp 53.30bp 140.27bp 132.27bp 360.34bp 357.60bp

6–9% 16.31bp 17.19bp 41.64bp 41.83bp 105.08bp 111.17bp

9–12% 6.65bp 8.23bp 21.05bp 19.90bp 43.33bp 52.00bp

12–22% 2.67bp 3.05bp 7.43bp 7.34bp 13.52bp 18.97bp

Table 1. Results of the VG model calibration simultaneously over all maturities.
Estimated parameters are as follows: λM = 0.920, αM = 5.553, βM = 1.157, λZ =
2.080, αZ = 2.306, βZ = −0.753, ρ = 0.321.

one should observe that these are the absolute values which have already been
divided by 10000 and therefore range from 0 to 0.004338, so the differences in
the default probabilities are almost negligible.

Under the additional assumption (15), we have calibrated a model with
VG distributed factors to the tranche prices of all maturities simultaneously.
The results are summarized in Table 1 and visualized in Figure 8. The fit
is excellent. The maximal absolute pricing error is less than 9bp, and for
the 5 and 7 year maturities the errors are, apart from the junior mezzanine
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Fig. 8. Graphical representation of the differences between model and market prices
obtained from the simultaneous VG calibration.
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tranches, almost as small as in the previous calibrations. The junior mezzanine
tranche is underpriced for all maturities, but it is difficult to say whether
this is caused by model or by market imperfections. Nevertheless the overall
pricing performance of the extended VG model is comparable or better than
the performance of the models considered in [1, 7, 19], although the latter
were only calibrated to tranche quotes of a single maturity.

Also note that this model admits a flat correlation structure not only over
all tranches, but also over different maturities: all model prices contained in
Table 1 were calculated using the same parameter ρ. Thus the correlation
smiles shown in Figure 3 which in some sense question the factor equation (5)
are completely eliminated. Therefore the intuitive idea of the factor approach
is preserved, but one should keep in mind that in the case of GH distributed
factors the dependence structure of the joint distribution of the Xi is more
complex and cannot be described by correlation alone.

4 A dynamic Markov chain model

In this section we discuss an entirely different approach to explain observed
CDO spreads, rooted more in the theory of stochastic processes. Our exposi-
tion summarizes results from [13].

4.1 The model

We begin with some notation. Given some probability space (Ω,F , Q), Q the
risk-neutral measure used for pricing, we define the default indicator of firm
i at time t by Yt,i = 1{Ti≤t}. Note that the default indicator process Yi =
(Yt,i)t≥0 is a right continuous process which jumps from 0 to 1 at the default
of firm i. The evolution of the default state of the portfolio is then described
by the process Y = (Yt,1, . . . , Yt,N )t≥0; obviously, Yt ∈ SY := {0, 1}N . We use
the following notation for flipping the ith coordinate of a default state: given
y ∈ SY we define yi ∈ SY by

yi
i := 1− yi and yi

j := yj , j ∈ {1, . . . , N} \ {i} . (16)

The default history (the internal filtration of the process Y ) is denoted by
(Ht), i.e. Ht = σ(Ys : s ≤ t). An (Ht)-adapted process (λt,i) is called the
default intensity of Ti (with respect to (Ht)) if

Yt,i −
∫ Ti∧t

0

λs,i ds is an (Ht)-martingale.

Intuitively, λt,i gives the instantaneous chance of default of a non-defaulted
firm i given the default history up to time t. It is well-known that the default
intensities determine the law of the marked point process (Yt); see for instance
[6] for a detailed account of the mathematics of marked point processes.
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Modeling the dynamics of Y .

We assume that the default intensity of a non-defaulted firm i at time t is
given by a function λi(t, Yt) of time and of the current default state Yt. Hence
the default intensity of a firm may change if there is a change in the default
state of other firms in the portfolio; in this way dependence between default
events can be modeled explicitly. Formally, we model the default indicator
process by a time-inhomogeneous Markov chain with state space SY . The
next assumption summarizes the mathematical properties of Y .

Assumption 1 (Markov family) Consider bounded and measurable func-
tions λi : [0,∞) × SY → R+, 1 ≤ i ≤ N . There is a family Q(t,y),
(t, y) ∈ [0,∞) × SY , of probability measures on (Ω,F , (Ht)) such that
Q(t,y)(Yt = y) = 1 and such that (Ys)s≥t is a finite-state Markov chain with
state space SY and transition rates λ(s, y1, y2) given by

λ(s, y1, y2) =

{
(1− y1,i) λi(s, y1), if y2 = yi

1 for some i ∈ {1, . . . , N},
0 else.

(17)

Relation (17) has the following interpretation: In t the chain can jump only to
the set of neighbors of the current state Yt that differ from Yt by exactly one
default; in particular there are no joint defaults. The probability that firm i
defaults in the small time interval [t, t + h) thus corresponds to the probabil-
ity that the chain jumps to the neighboring state (Yt)i in this time period.
Since such a transition occurs with rate λi(t, Yt), it is intuitively obvious that
λi(t, Yt) is the default intensity of firm i at time t; a formal argument is given
in [13].

The numerical treatment of the model can be based on Monte Carlo simu-
lation or on the Kolmogorov forward and backward equation for the transition
probabilities; see again [13] for further information. An excellent introduction
to continuous-time Markov chains is given in [28].

Modeling default intensities.

The default intensities λi(t, Yt) are crucial ingredients of the model. If the
portfolio size N is large — such as in the pricing of typical synthetic CDO
tranches — it is natural to assume that the portfolio has a homogeneous
group structure. This assumption gives rise to intuitive parameterizations for
the default intensities; moreover, the homogeneous group structure leads to
a substantial reduction in the size of the state space of the model. Here we
concentrate on the extreme case where the entire portfolio forms a single
homogeneous group so that the processes Yi are exchangeable; this simplifying
assumption is made in most CDO pricing models; see also Section 2. Denote
the number of defaulted firms at time t by

Mt :=
N∑

i=1

Yt,i .
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As discussed in [13], in a homogeneous model default intensities are necessarily
of the form

λi(t, Yt) = h(t,Mt) for some h : [0,∞)× {0, . . . , N} → R+ . (18)

Note that the assumption that default intensities depend on Yt via the number
of defaulted firms Mt makes sense also from an economic viewpoint, as un-
usually many defaults might have a negative impact on the liquidity of credit
markets or on the business climate in general. This point is discussed further
in [12] and [16].

The simplest exchangeable model is the linear counterparty risk model.
Here

h(t, l) = λ0 + λ1l , λ0 > 0, λ1 ≥ 0, l ∈ {0, . . . , N} . (19)

The interpretation of (19) is straightforward: upon default of some firm the
default intensity of the surviving firms increases by the constant amount λ1

so that default dependence increases with λ1; for λ1 = 0 defaults are indepen-
dent. Model (19) is the homogeneous version of the so-called looping-defaults
model of [18].

The next model generalizes the linear counterparty risk model in two im-
portant ways: first, we introduce time-dependence and assume that a default
event at time t increases the default intensity of surviving firms only if Mt

exceeds some deterministic threshold µ(t) measuring the expected number of
defaulted firms up to time t; second, we assume that on {l > µ(t)} the func-
tion h(t, ·) is strictly convex. Convexity of h implies that large values of Mt

lead to very high values of the default intensities, thus triggering a cascade of
further defaults. This will be important in explaining properties of observed
CDO prices below. The following specific model with the above features will
be particularly useful:

h(t, l) = λ0 +
λ1

λ2

(
exp

(
λ2

(l − µ(t))+

N

)
− 1

)
, λ0 > 0, λ1, λ2 ≥ 0 ; (20)

in the sequel we call (20) convex counterparty risk model. In (20) λ0 is a level
parameter that mainly influences credit quality. λ1 gives the slope of h(t, l) at
µ(t); intuitively this parameter models the strength of default interaction for
“normal” realisations of Mt. The parameter λ2 controls the degree of convexity
of h and hence the tendency of the model to generate default cascades; note
that for λ2 → 0 (and µ(t) ≡ 0) (20) reduces to the linear model (19).

The Markov property of M .

It is straightforward that for default intensities of the form (18) the process
M = (Mt)t≥0 is itself a Markov chain with generator given by

GM
[t]f (l) = (N − l)h(t, l)

(
f(l + 1)− f(l)

)
. (21)
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In fact, since Assumption 1 excludes joint defaults, Mt can jump only to Mt+1.
The intensity of such a transition is proportional to the number N −Mt of
surviving firms at time t as well as to their default intensity h(t,Mt). This
is important: since the portfolio loss satisfies Lt = (1 − R)Mt/N , the loss
processes Li of the individual tranches (and of course the overall portfolio
loss) are given by functions of Mt, so that we may concentrate on the process
M . As shown in [13] this considerably simplifies the numerical analysis of the
model. Similar modeling ideas have independently been put forward in [3].

4.2 Analysis of CDO tranches

Next we turn to an analysis of synthetic CDO tranches in the context of the
Markov chain model; in particular, we are interested in modeling the well-
known implied correlation skew described in Section 2.3. Recall that according
to equation (3), the computation of fair tranche spreads ri boils down to
evaluating the distribution of Li

t — and hence the distribution of Mt — at
the premium payment dates. The latter can be computed efficiently using the
Kolmogorov forward equations or by simulation; see [13] for details.

The basic idea for generating correlation skews in the context of the con-
vex counterparty risk model (20) is simple: by increasing λ2 we can generate
occasional large clusters of defaults without affecting the left tail of the dis-
tribution of Lt too much; in this way we can reproduce the spread of the
mezzanine and senior CDO tranches in a way which is consistent with the
observed spread of the equity tranche. In order to confirm this intuition we
consider a numerical example with spread data from [17]. In Table 2 we give
the CDO spreads if the convexity parameter λ2 is varied; λ0 and λ1 were cali-

tranches [0,3] [3,6] [6,9] [9,12] [12,22]

market spreads 27.6% 168.0bp 70.0bp 43.0bp 20.0bp

model spreads
P

abs. err.

λ2 = 0 27.6% 223.1bp 114.5bp 61.1bp 16.9bp 120.8bp

λ2 = 5 27.6% 194.2bp 95.7bp 54.9bp 23.3bp 67.1bp

λ2 = 8 27.6% 172.1bp 80.0bp 46.7bp 23.7bp 21.5bp

λ2 = 8.54 27.6% 168.0bp 77.1bp 45.1bp 23.5bp 12.7bp

λ2 = 10 27.6% 156.9bp 69.4bp 40.7bp 22.7bp 16.7bp

state-dependent LGD
δ0 = 0.5; δ1 = 7.5

27.6% 168.0bp 71.2bp 39.3bp 19.6bp 5.3bp

Table 2. CDO spreads in the convex counterparty risk model (20) for varying λ2.
λ0 and λ1 were calibrated to the index level of 42bp and the market quote for the
equity tranche, assuming δ = 0.6. For λ2 ∈ [8, 10] the qualitative properties of the
model-generated CDO spreads resemble closely the behaviour of the market spreads;
with state-dependent LGD the fit is almost perfect.
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brated to the index level and the observed market quote of the equity tranche.
The results show that for appropriate values of λ2 the model can reproduce
the qualitative behavior of the observed tranche spreads in a very satisfactory
way. This observation is interesting, as it provides an explanation of correla-
tion skews of CDOs in terms of the dynamics of the default indicator process.
Similarly as in [2], the model fit can be improved further by considering a
state-dependent loss given default of the form δt = δ0 + δ1Mt with δ0, δ1 > 0;
see again Table 2.

Comments.

Implied correlations for CDO tranches on the iTraxx Europe have changed
substantially since August 2004. More importantly, the analysis presented in
Table 2 presents only a “snapshot” of the CDO market at a single day. For
these reasons in [13] the convex counterparty risk model (20) was recalibrated
to 6 months of observed 5 year tranche spreads on the iTraxx Europe in the
period 23.9.2005–03.03.2006. It turned out that the resulting parameters were
quite stable over time.

In this paper we have calibrated a parametric version of the model (20)
to observed CDO spreads. For an interesting nonparametric calibration pro-
cedure based on the Kolmogorov forward equation we refer to [3, 20, 29].

Dynamic Markov chain models are very useful tools for studying the prac-
tically relevant risk management of CDO tranches via dynamic hedging; we
refer to the recent papers [14] and [20] for details.
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32. O. A. Vasiček, Probability of loss on loan portfolio. Mimeo, KMV Corporation
(1987)
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