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A Cross-Currency Lévy Market Model

Ernst Eberlein and Nataliya Koval∗

Abstract

The Lévy Libor or market model which was introduced in Eberlein and Özkan (2005)
is extended to a multi-currency setting. As an application we derive closed form pricing
formulas for cross-currency derivatives. Foreign caps and floors and cross-currency swaps
are studied in detail. Numerically efficient pricing algorithms based on bilateral Laplace
transforms are derived. A calibration example is given for a two-currency setting (EUR,
USD).

Key words: multi-currency model, cross-currency derivatives, foreign forward caps and
floors, cross-currency swaps, time-inhomogeneous Lévy processes, forward martingale mea-
sure

1 Introduction

For corporations which operate in a globalised economy, the fluctuations in foreign exchange
and interest rates represent two significant sources of risk. It has been understood for a long
time that these risk factors are linked by fundamental economic relationships. For a brief
review of attempts to model this complex combination of risks, see Musiela and Rutkowski
(1997, chap. 17). The starting point for the present paper was essentially Schlögl (2002),
where various possibilities to extend the classical lognormal market model (Brace, Gatarek
and Musiela (1997), Miltersen, Sandmann and Sondermann (1997), Jamshidian (1997)) to a
multi-currency setting are discussed.

The standard models which are implemented in the financial industry to describe the
evolution of interest rates are based on Brownian motion as the driving process. Due to the
limited flexibility of the normal distribution and the process generated from it, already for a
single market it is difficult to calibrate such a model to quotes of derivatives like caps, floors
and swaptions. The market practice is to communicate prices of derivatives in terms of their
Black volatilities, i.e. volatilities in a log-normal model. The corresponding surfaces across all
strikes and maturities expose a sophisticated term structure of smiles (see e.g. Eberlein and
Kluge (2004, Figure 1)). In order to catch these empirical surfaces as accurate as possible we
use a wider class of distributions and the processes which they generate. Thus we are entering
the realm of Lévy processes or one could say we use semimartingale techniques.

∗The second author appreciates the financial support by the Graduate College Nonlinear Differential Equa-
tions: Modelling, Theory, Numerics, Visualisation and by a grant Eb66/9-1 from the Deutsche Forschungsge-
meinschaft (DFG). We thank Wolfgang Kluge and two referees for a number of valuable suggestions.
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It is actually the combination of modern stochastic analysis in terms of semimartingales
with classical results on Lévy processes which makes this approach attractive. It is not our
goal to push the models to utmost generality from the mathematical point of view – although
as one sees from the canonical representation for semimartingales, the latter are only slightly
more general than Lévy processes. In order to successfully implement theses models one has
to look at the right balance between flexibility of the model, i.e. increasing the number of
parameters, and tractability. Estimation of the parameters is a crucial issue here. The class
of generalized hyperbolic distributions and the purely discontinuous processes which they
generate, turn out to be a reasonable choice. Sometimes subclasses such as hyperbolic, normal
inverse Gaussian or variance gamma do as well. The only large class which is not contained
in this family are stable distributions, but stable distributions are not a first choice in finance
anyhow. Valuation of derivatives is based on martingale theory and the latter needs finite
moments as an intrinsic ingredient. It is this what stable distributions cannot provide. Let us
mention that Cauchy as well as Student-t distributions appear as limiting cases of generalized
hyperbolic distributions (see Eberlein and von Hammerstein (2004)) . Thus from the point of
view of tail behavior one can approximate the class of heavy tailed distributions as close as
one wants.

The initial Lévy term structure model (Eberlein and Raible (1999)) which shows already
a better performance than the log-normal one, was extended to a model which is driven
by a time-inhomogeneous Lévy process in Eberlein, Jacod and Raible (2005) and Eberlein
and Kluge (2006). Time-inhomogeneity adds the necessary flexibility towards the time de-
pendence of smiles. The Lévy Libor or market model (Eberlein and Özkan (2005)) which
is designed to price Libor-dependent securities was developed from the very beginning for
time-inhomogeneous driving processes, since time-inhomogeneity comes in naturally when
one changes from one forward measure to the next during the backward induction. To con-
sider expectations with respect to the appropriate forward martingale measures is the key
point on which this approach relies. Forward measures provide the elegance for this theory.

It is evident that the calibration problem becomes even more demanding as soon as one
considers derivatives which are related to several currencies. A cross-currency derivative is
by definition a security which depends on at least two economics. Usually this will be the
domestic and a foreign market. Note that there are basket options that are written on a
weighted average of a number of foreign interest rates. Examples are basket caps and basket
floors. Cross-currency derivatives allow to manage the combination of interest rate and foreign
exchange risk. In this paper we extend the Lévy market model to a multi-currency setting.
The closely related forward process approach is discussed as well. As an application we derive
closed form pricing formulas for foreign caps and floors, cross-currency swaps as well as quanto
caplets. Further cross-currency instruments can be priced along the same lines.

The outline of the paper is as follows. In section 2 we introduce the driving time-inhomo-
geneous d-dimensional Lévy process and define the dynamics of the forward exchange rates
for a set of m foreign currencies. The single currency Lévy Libor approach is extended to a
multi-currency setting in section 3. By construction a link between the different fixed-income
markets exists only on the level of the processes which drive the most distant Libor rates.
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The links which are induced on the level of arbitrary tenor time points by a no arbitrage
consideration are studied in detail in section 4. On the basis of this model closed form pricing
formulas can be derived for a number of cross-currency derivatives, which are studied in section
5. That the model is not too complex to be implemented is shown in the last section. Time-
inhomogeneity is used in a mild sense in the implementations, namely in the sense of driving
processes which are piecewise (time-homogeneous) Lévy processes. Typically we used three or
four of them, which are related to short, middle range and long maturities. This way we end up
with a reasonable number of parameters. Generalized hyperbolic Lévy processes turned out to
be a good choice here as well. The calibration results are presented for derivatives depending
on two currencies (EUR, USD). The largest deviations between market and model prices
expressed in volatilities occur for short maturities and thus in an area where absolute values
of the prices are extremely small. Thus these deviations can be neglected. Similar empirical
results were obtained in a three-currency market where derivatives in British Pounds were
included. Numerically the so-called forward process approach is always more efficient than
the Libor approach. The latter one needs approximations which can be avoided in the more
direct forward process approach. On the other side negative interest rates are not excluded if
one starts with a Lévy model for the forward process.

2 The foreign forward exchange rate model

Let T ∗ be a fixed time horizon for all market activities. We consider an international economy
consisting of m + 1 markets (currencies) indexed by i ∈ {0, . . . ,m}, where 0 stands for the
domestic market. The choice of the domestic market is arbitrary and depends on the particular
pricing problem under consideration. We introduce a discrete-tenor structure T := {T0 <

T1 < · · · < TN < TN+1 = T ∗}, which is the same for the domestic market and for all foreign
markets.

All processes considered in what follows are defined on a common probability space(
Ω,F ,P0,T ∗), where the measure P0,T ∗ is interpreted as the domestic forward measure associ-

ated with the date T ∗. The probability space is endowed with a canonical filtration (Ft)0≤t≤T ∗ ,
associated with a d-dimensional time-inhomogeneous Lévy process (L0,T ∗

t )0≤t≤T ∗ . More specif-
ically, L0,T ∗ = (L0,T ∗

1 , . . . , L0,T ∗
d )> is a process with independent increments and absolutely

continuous characteristics (shortly PIIAC), which is defined by

L0,T ∗
t =

∫ t

0
b0,T

∗
s ds+

∫ t

0
cs dW 0,T ∗

s +
∫ t

0

∫

Rd

x (µ− ν0,T ∗) (ds,dx). (2.1)

The law of L0,T ∗
t is determined by the following characteristic function:

E
[
exp

(
iu>L0,T ∗

t

)]
= exp

(∫ t

0

(
iu>b0,T

∗
s − 1

2
u>Csu

+
∫

Rd

(
exp

(
iu>x

)
− 1− iu>x

)
λ0,T ∗
s (dx)

)
ds

)
.

(2.2)

Here b0,T
∗

t , u ∈ Rd, and Ct is a symmetric positive semidefinite d×d matrix. In equation (2.1)
W 0,T ∗
t denotes a P0,T ∗-standard Brownian motion with values in Rd and ct is a measurable
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version of the square root of Ct. The measure µ is the random measure of jumps of the process

L0,T ∗ , and ν0,T ∗(ds,dx) = λ0,T ∗
s (dx) ds is the P0,T ∗-compensator of µ, where λ0,T ∗

t (dx) is a

measure on Rd that integrates (|x|2∧1) and λ0,T ∗
t ({0}) = 0 for all t ∈ [0, T ∗]. We assume that

the three characteristics b0,T
∗

t and Ct and ν0,T ∗ satisfy the following integrability condition:

∫ T ∗

0

(
|b0,T ∗s |+ ‖Cs‖+

∫

Rd

(|x|2 ∧ 1
)
λ0,T ∗
s (dx)

)
ds <∞.

Furthermore, we make the following assumption:

(EM) There exists a positive constant M such that

∫ T ∗

0

∫

{|x|>1}
exp

(
u>x

)
λ0,T ∗
s (dx) ds <∞

for all u ∈ [−M,M ]d.

Note that under assumption (EM) all moments of L0,T ∗
t are finite (see e.g. Lemma 6 in Eberlein

and Kluge (2006)). In particular the first moment is finite. As a consequence we do not need

a truncation function in the representations (2.1) or (2.2).

To introduce a model for the foreign forward exchange rate associated with the final

horizon date T ∗, we use the following inputs

(FXR.1) We assume for every market i ∈ {0, . . . ,m} a strictly decreasing and strictly positive

family Bi(0, Tj) (j = 0, . . . , N+1) of domestic and foreign zero-coupon bond prices

and for i ∈ {1, . . . ,m} a family Xi(0) of positive spot exchange rates (expressed in

units of domestic currency per unit of foreign currency) to be given. Consequently,

the initial value of the foreign forward exchange rate corresponding to the most

distant tenor time point T ∗ is given by

FXi(0, T ∗) =
Bi(0, T ∗)Xi(0)
B0(0, T ∗)

.

(FXR.2) For every foreign market i ∈ {1, . . . ,m} there is a continuous deterministic function

ξi(·, T ∗) : [0, T ∗] → Rd+. We assume for every coordinate k, 1 ≤ k ≤ d of the vector

ξi(s, T ∗) that (ξi(s, T ∗))k ≤ M for all s ∈ [0, T ∗] and i ∈ {1, . . . ,m}, where M is

chosen in such a way that

M <
M

N + 2
,

and M is the constant from assumption (EM).
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(FXR.3) For every i ∈ {1, . . . ,m} the dynamics of the foreign forward exchange rate for the
date T ∗ is given by

FXi (t, T ∗) = FXi (0, T ∗) exp
(∫ t

0
γi(s, T ∗) ds+

∫ t

0
ξi (s, T ∗)> dL0,T ∗

s

)
(2.3)

where

γi(s, T ∗) = −ξi(s, T ∗)>b0,T ∗s − 1
2
|ξi(s, T ∗)>cs|2

−
∫

Rd

(
eξ

i(s,T ∗)>x − 1− ξi(s, T ∗)>x
)
λ0,T ∗
s (dx).

The drift coefficients γi(·, T ∗) are chosen such that equation (2.3) can be written equivalently
in the form

FXi(t, T ∗) = FXi(0, T ∗)Et
(∫ ·

0
ξi(s, T ∗)>cs dW 0,T ∗

s

+
∫ ·

0

∫

Rd

(
exp

(
ξi(s, T ∗)>x

)
− 1

)
(µ− ν0,T ∗) (ds,dx)

)
,

(2.4)

where Et(Z) denotes as usual the stochastic exponential of a process Z at time t. Evidently,
by construction FXi(·, T ∗) is a local P0,T ∗-martingale. It is actually a martingale since it is the
stochastic exponential of a process which is a PIIAC and a local martingale (see Proposition
4.4 in Eberlein, Jacod and Raible (2005)). As a consequence

EP0,T∗

[
FXi(t, T ∗)
FXi(0, T ∗)

]
= 1.

Observe that we can define the foreign forward martingale measure associated with the
date T ∗ and market i ∈ {1, . . . ,m} by setting its Radon–Nikodým derivative to be equal to
the stochastic exponential in equation (2.4). More specifically,

dPi, T ∗

dP0,T ∗

∣∣∣∣Ft
=
FXi(t, T ∗)
FXi(0, T ∗)

, for i ∈ {1, . . . ,m}. (2.5)

Hence, by Girsanov’s theorem for semimartingales a Pi,T ∗-standard Brownian motion and the
Pi,T ∗-compensator of the random measure of jumps µ are given by

W i, T ∗
t = W 0,T ∗

t −
∫ t

0
csξ

i(s, T ∗) ds,

νi, T ∗(dt,dx) = exp
(
ξi(t, T ∗)>x

)
ν0,T ∗(dt, dx),

(2.6)

where i ∈ {1, . . . ,m}.
The inverse forward exchange rate F̂Xi at time t for the date T ∗ is defined by

F̂Xi(t, T ∗) :=
1

FXi(t, T ∗)
.
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Applying Itô’s formula to equation (2.4), we obtain the following dynamics of the inverse
forward exchange rate under the domestic forward measure P0,T ∗

dF̂Xi(t, T ∗)
F̂Xi(t−, T ∗)

= − ξi(t, T ∗)>ct dW
0,T ∗
t −

∫

Rd

(
exp

(
ξi(t, T ∗)>x

)
− 1

)
(µ− ν0,T ∗) (dt,dx)

+ |ξi(t, T ∗)>ct|2 dt+
∫

Rd

(
exp

(
ξi(t, T ∗)>x

)− 1
)2

exp (ξi(t, T ∗)>x)
µ(dt, dx).

Using (2.6) we can write this in the form

F̂Xi(t, T ∗) = F̂Xi(0, T ∗)Et
(
−

∫ ·

0
ξi(s, T ∗)>cs dW i,T ∗

s

+
∫ ·

0

∫

Rd

(
1

exp (ξi(s, T ∗)>x)
− 1

)
(µ− νi,T ∗) (ds,dx)

)
.

(2.7)

Thus, being the stochastic exponential of a local martingale, the inverse forward exchange
rate is itself a local martingale under the forward martingale measure Pi, T ∗ . Using the same
arguments as for FXi(t, T ∗) we can show that it is actually a martingale and, thus,

EPi,T∗

[
F̂Xi(t, T ∗)
F̂Xi(0, T ∗)

]
= 1.

Hence, the stochastic exponential on the right-hand side of equation (2.7) can also be consid-
ered as a density process. More specifically, for i = 1, . . . ,m we have

dP0,T ∗

dPi,T ∗
∣∣∣∣Ft

=
F̂Xi(t, T ∗)
F̂Xi(0, T ∗)

. (2.8)

3 The cross-currency Lévy Libor rate model

In this section we present the cross-currency Lévy Libor model, which is an extension of the
Lévy Libor model introduced in Eberlein and Özkan (2005).

Let us consider the discrete-tenor structure T, which was defined at the beginning of the
previous section. To construct the model in the multi-currency setting we make the following
additional assumptions:

(CLM.1) For every market i ∈ {0, . . . ,m} and every maturity Tj with j ∈ {0, . . . , N} there
is a deterministic function λi(·, Tj) : [0, T ∗] → Rd+, which is continuous and which
represents the volatility of the forward Libor rate Li(·, Tj) in market i. We assume
for every coordinate k, 1 ≤ k ≤ d, of the vector λi(s, Tj), that (λi(s, Tj))k ≤M for
all s ∈ [0, T ∗], where M is the constant from assumption (FXR.2) and λi(s, Tj) = 0
for s > Tj .

(CLM.2) The initial term structure Li(0, Tj) of forward Libor rates in the i-th market is
given by

Li(0, Tj) =
1
δ

(
Bi(0, Tj)
Bi(0, Tj+1)

− 1
)
, (3.1)

where δ = Tj+1 − Tj , j = 0, . . . , N .
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The forward Libor rates are constructed for every market i ∈ {0, . . . ,m} by a backward
induction. We start with the most distant rate Li(t, TN ) and postulate that under Pi,T ∗ it has
the form

Li(t, TN ) = Li(0, TN ) exp
(∫ t

0
λi(s, TN )> dLi,T

∗
s

)
,

where

Li,T
∗

t =
∫ t

0
bi,T

∗
s ds+

∫ t

0
cs dW i,T ∗

s +
∫ t

0

∫

Rd

x (µ− νi,T ∗) (ds,dx). (3.2)

with W i,T ∗ and νi,T ∗ given by equations (2.6) in the case of i ∈ {1, . . . ,m} and by (2.1) for
i = 0.

Observe that under Assumption (EM), the process Li,T
∗

t is a special semimartingale. Obvi-
ously,

∫ t
0 λ

i(s, TN ) dLi,T
∗

s exists for every t ∈ (0, TN ] and the process
(∫ t

0 λ
i(s, TN ) dLi,T

∗
s

)
0≤t≤TN

is a special semimartingale too. By Proposition 2.2.5 in Koval (2005) it is also exponentially
special.

We want the Libor rate process to be a martingale under Pi,T ∗. To assure the martingality
we choose the drift term bi,T

∗
t such that

∫ t
0 λ

i(s, TN )>bi,T
∗

s ds is equal to the exponential

compensator of
∫ t
0 λ

i(s, TN )>
(
dLi,T

∗
s − bi,T

∗
s ds

)
. More specifically,

∫ t

0
λi(s, TN )>bi,T

∗
s ds = − 1

2

∫ t

0
|λi(s, TN )>cs|2 ds

−
∫ t

0

∫

Rd

(
exp

(
λi(s, TN )>x

)
− 1− λi(s, TN )>x

)
νi,T ∗(ds,dx),

Hence, we obtain the following representation of the Libor rate Li(t, TN )

Li(t, TN )
Li(0, TN )

= Et
(∫ ·

0
λi(s, TN )>cs dW i,T ∗

s

+
∫ ·

0

∫

Rd

(
exp

(
λi(s, TN )>x

)
− 1

)
(µ− νi,T ∗) (ds,dx)

)
.

Recall that the forward process corresponding to the time points TN and T ∗ is related to
the Libor rate by

FBi (t, TN , T ∗) = 1 + δLi(t, TN ), i = 0, . . . ,m. (3.3)

Thus, from the dynamics of Li(t, TN ) we can immediately derive the dynamics of FBi (t, TN , T ∗)

dFBi(t, TN , T ∗)
FBi(t−, TN , T ∗) =

δLi(t−, TN )
1 + δLi(t−, TN )

(
λi(t, TN )>ct dW

i,T ∗
t

+
∫

Rd

(
exp

(
λi(t, TN )>x

)
− 1

)
(µ− νi,T ∗) (dt, dx)

)
.

(3.4)

Observe that the coefficients of the stochastic differential equation




δLi(t−, TN )
1 + δLi(t−, TN )

λi(t, TN )>ct, and

δLi(t−, TN )
1 + δLi(t−, TN )

(
exp

(
λi(t, TN )>x

)
− 1

)
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are no longer deterministic. For numerical purposes it is desirable to stay within the class of
PIIAC processes. This can be achieved by replacing the random term

li(t−, TN ) :=
δLi(t−, TN )

(1 + δLi(t−, TN ))
(3.5)

in the two coefficients above with a deterministic one, namely li(0, TN ) = δLi(0, TN )/(1 +
δLi(0, TN )). A similar approximation has already been used in Brace and Womersley (2000)
for the derivation of the approximate swaption formula in the lognormal forward Libor model,
as well as in Schlögl (2002). In implementations of the Lévy Libor model we make use of this
approximation. For the development of the model itself, the approximation is not relevant.

Now we write for all t ∈ [0, TN ]

αi(t, TN , T ∗)> := li(t−, TN )λi(t, TN )>ct

and
βi(t, x, TN , T ∗) := li(t−, TN )

[
exp

(
λi(t, TN )>x

)
− 1

]
+ 1.

Then the forward process, given by equation (3.4), admits the following representation:

FBi (t, TN , T ∗) = FBi (0, TN , T ∗) Et
(∫ ·

0
αi(s, TN , T ∗)> dW i,T ∗

s (3.6)

+
∫ ·

0

∫

Rd

(
βi(s, x, TN , T ∗)− 1

)
(µ− νi,T ∗) (ds,dx)

)
.

Using this dynamics, we can define the forward measure Pi,TN , associated with the date TN
and the market i, by setting

dPi,TN

dPi,T ∗
= ETN

(∫ ·

0
αi(t, TN , T ∗)> dW i,T ∗

t +

+
∫ ·

0

∫

Rd

(
βi(t, x, TN , T ∗)− 1

)
(µ− νi,T ∗) (dt, dx)

)
.

Again using Girsanov’s theorem we obtain a Pi,TN -standard Brownian motion W i,TN and the
Pi,TN -compensator of the random measure of jumps µ

W i,TN
t = W i,T ∗

t −
∫ t

0
αi(s, TN , T ∗) ds,

νi,TN
(dt,dx) = βi(t, x, TN , T ∗)νi,T ∗(dt, dx).

(3.7)

Now we define the forward Libor rate Li(t, TN−1) by postulating that under the forward
measure Pi,TN

Li(t, TN−1) = Li(0, TN−1) exp
(∫ t

0
λi(s, TN−1)> dLi,TN

s

)
,

where

Li,TN
t =

∫ t

0
bi,TN
s ds+

∫ t

0
cs dW i,TN

s +
∫ t

0

∫

Rd

x (µ− νi,TN
) (ds,dx).
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To ensure the Pi,TN -martingality of Li(t, TN−1), we choose again the drift characteristic bi,TN

such that
∫ t
0 λ

i(s, TN−1)>b
i,TN
s ds is equal to the exponential compensator of

∫ t
0 λ

i(s, TN−1)>

·
(
dLi,TN

s − bi,TN
s ds

)
and proceed as for Li(t, TN ).

Carrying forward this procedure, we get for each time point Tj−1 with j = 1, . . . , N +1 in
the tenor structure T a Libor rate process, which has the following form under the forward
martingale measure Pi,Tj in the i-th market

Li(t, Tj−1) = Li(0, Tj−1) exp
(∫ t

0
λi(s, Tj−1)> dLi,Tj

s

)
, (3.8)

where

L
i,Tj

t =
∫ t

0
b
i,Tj
s ds+

∫ t

0
cs dW i,Tj

s +
∫ t

0

∫

Rd

x
(
µ− νi,Tj

)
(ds,dx), (3.9)

and the drift term b
i,Tj

t is chosen such that Li(t, Tj−1) is a martingale. More specifically,
∫ t

0
λi(s, Tj−1)>b

i,Tj
s ds = − 1

2

∫ t

0
|λi(s, Tj−1)>cs|2 ds

−
∫ t

0

∫

Rd

(
eλ

i(s,Tj−1)>x − 1− λi(s, Tj−1)>x
)
νi,Tj (ds,dx).

(3.10)

The forward martingale measures Pi,Tj−1 corresponding to the i-th market are defined suc-
cessively by the densities

dPi,Tj−1

dPi,Tj
=
FBi(Tj−1, Tj−1, Tj)
FBi(0, Tj−1, Tj)

=
1 + δLi(Tj−1, Tj−1)

1 + δLi(0, Tj−1)
,

where the forward processes FBi (·, Tj−1, Tj) are given in the form

dFBi (t, Tj−1, Tj)
FBi (t−, Tj−1, Tj)

= αi(t, Tj−1, Tj)> dW i,Tj

t +
∫

Rd

(
βi (t, x, Tj−1, Tj)− 1

) (
µ− νi,Tj

)
(dt, dx).

(3.11)
The forward Brownian motion associated with the date Tj−1 is given by

W
i,Tj−1

t = W i,T ∗
t −

∫ t

0
αi(s, Tj−1, T

∗) ds

and
νi,Tj−1(dt, dx) = βi(t, x, Tj−1, T

∗)νi,T ∗(dt,dx) (3.12)

is the Pi,Tj−1-compensator of µ, where for j = 1, . . . , N + 1 we have

αi(t, Tj−1, T
∗)> :=

∑N

k=j−1
αi(t, Tk, Tk+1)> =

∑N

k=j−1
li(t−, Tk)λi(t, Tk)>ct

βi(t, x, Tj−1, T
∗) :=

∏N

k=j−1
βi(t, x, Tk, Tk+1)

=
∏N

k=j−1

(
li(t−, Tk)

[
exp

(
λi(t, Tk)>x

)
− 1

]
+ 1

)
(3.13)

As explained in Eberlein and Özkan (2005), one can alternatively base the backward
induction on the forward process. This approach allows a direct implementation without any
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approximations and thus, simplifies the calibration to the market data. On the other side
with this approach one has to accept negative Libor rates with some probability. Let us
briefly outline the forward process approach. We postulate

FBi (t, Tj−1, Tj) = 1 + δLi(t, Tj−1) =
(
1 + δLi(0, Tj−1)

)
exp

(∫ t

0
λi(s, Tj−1)> dLi,Tj

s

)
(3.14)

for i = 0, . . . ,m. Having chosen the drift characteristic bi,Tj

t as in equation (3.10), we can
write the last equation as a stochastic differential equation

dFBi(t, Tj−1, Tj)
FBi(t−, Tj−1, Tj)

= λi(t, Tj−1)>ct dW
i,Tj

t

+
∫

Rd

(
exp

(
λi(t, Tj−1)>x

)
− 1

) (
µ− νi,Tj

)
(dt,dx)

with the initial condition

FBi(0, Tj−1, Tj) =
Bi(0, Tj−1)
Bi(0, Tj)

, j = 1, . . . , N + 1.

Then we define
dPi,Tj−1

dPi,Tj
=
FBi (Tj−1, Tj−1, Tj)
FBi (0, Tj−1, Tj)

.

In this alternative setting the forward Brownian motion and the Pi,Tj−1-compensator of µ are
given by

W
i,Tj−1

t = W
i,Tj

t −
∫ t

0
csλ

i(s, Tj−1) ds

= W i,T ∗
t −

∫ t

0
cs

(∑N

k=j−1
λi(s, Tk)

)
ds,

νi,Tj−1(dt, dx) = exp
(
λi(t, Tj−1)>x

)
νi,Tj (dt,dx)

= exp
(∑N

k=j−1
λi(t, Tk)>x

)
νi,T ∗(dt, dx).

(3.15)

4 Relationship between the domestic and the foreign markets

In the previous section we have shown, how the arbitrage free markets can be modeled on
the basis of a cross-currency (time-inhomogeneous) Lévy Libor model. In particular, given a
discrete-tenor structure T, for each market i ∈ {0, . . . ,m} the forward measures associated
with dates Tj , j = 1, . . . , N + 1 were constructed, using a backward induction procedure
starting from the horizon date T ∗ = TN+1. The relationships (Radon–Nikodým densities)
between the successive forward measures were established separately in each market. Nat-
urally, the next step is to link the domestic and the foreign markets (see Figure 4.1). For
diffusion models Schlögl (2002) succeeded to do this by a backward induction applied to the
forward exchange rate processes. We will use the following standard relationship between two
successive foreign forward exchange rates on the i-th foreign market

10



Domestic Market

P0,T∗ -forward measure

P0,TN -forward measure

P0,TN−1 -forward measure

P0,Tj+1 -forward measure

P0,Tj -forward measure

P0,T1 -forward measure

Foreign Market

Pi,T∗ -forward measure

Pi,TN -forward measure

Pi,TN−1 -forward measure

Pi,Tj+1 -forward measure

Pi,Tj -forward measure

Pi,T1 -forward measure

?

?

?

?

?

?

?

?

?

?

-

-

FB(·, Tj , Tj+1) FBi(·, Tj , Tj+1)

FXi(·, Tj)

FXi(·, T ∗)

Figure 4.1 Relationship between domestic and foreign fixed income markets in a discrete-tenor framework.

(FXR.4) The forward exchange rates in the i-th foreign market (i ∈ {1, . . . ,m}) are related
by

FXi(t, Tj) = FXi(t, Tj+1)
FBi(t, Tj , Tj+1)
FB0(t, Tj , Tj+1)

, j = 0, . . . , N, and i = 1, . . . ,m.

Based on this product representation we can now derive the dynamics of FXi(t, Tj).

Theorem 4.1 For every tenor time point Tj j = 1, . . . , N and every market i = 1, . . . ,m
under the domestic forward measure P0,Tj the dynamics of the forward exchange rate for date
Tj is given by

dFXi(t, Tj)
FXi(t−, Tj) = ζi(t, Tj , Tj+1)> dW 0,Tj

t

+
∫

Rd

(
ζi(t, x, Tj , Tj+1)− 1

) (
µ− ν0,Tj

)
(dt,dx),

(4.1)

where the coefficients ζi(t, Tj , Tj+1) and ζi(t, x, Tj , Tj+1) are given recursively by the following
formula

ζi(t, Tj , Tj+1) = αi(t, Tj , Tj+1)− α0(t, Tj , Tj+1) + ζi (t, Tj+1, Tj+2)
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with ctξi(t, T ∗) as starting point and

ζi(t, x, Tj , Tj+1) =
βi(t, x, Tj , Tj+1)
β0(t, x, Tj , Tj+1)

ζi(t, x, Tj+1, Tj+2)

with exp
(
ξi(t, T ∗)>x

)
as starting point.

Proof. In the Appendix.

Looking back at the definition of αi(t, Tj , Tj+1) (see (3.13)) we can reexpress ζi(t, Tj , Tj+1)
and ζi(t, x, Tj , Tj+1) in terms of the domestic and forward Libor rate coefficients

ζi (t, Tj , Tj+1)
> = li (t−, Tj)λi (t, Tj)>ct − l0 (t−, Tj)λ0 (t, Tj)

>ct + ζi (t, Tj+1, Tj+2)
> ,

ζi (t, x, Tj , Tj+1) =
li (t−, Tj)

[
exp

(
λi (t, Tj)

> x
)
− 1

]
+ 1

l0 (t−, Tj)
[
exp

(
λ0 (t, Tj)

> x
)
− 1

]
+ 1

ζi(t, x, Tj+1, Tj+2),

(4.2)
with li(t−, Tj) defined in the same way as li(t−, TN ) is defined in (3.5). Evidently the coeffi-
cients ζi(t, Tj , Tj+1) and ζi(t, x, Tj , Tj+1) are not deterministic, since li(t−, Tj) and l0(t−, Tj)
are not. Hence, we cannot model the foreign forward exchange rate as an exponential of a
time-inhomogeneous Lévy process under all domestic forward measures simultaneously. This
problem has been encountered already in the case of the Libor market model, where Libor
rates are assumed to be driven by a Brownian motion.

In the Gaussian setting various possible combinations of lognormality assumptions for
the forward exchange rates and the Libor rates in different markets have been analyzed
systematically in Schlögl (2002). In particular, if lognormal dynamics are assumed for forward
Libor rates in two currencies, the forward exchange rate, linking these two currencies, can
be chosen to be lognormal for one maturity only. For all other maturities the dynamics can
be obtained using no-arbitrage relationships similar to (4.2) above. Alternatively, one could
choose forward Libor rates in only one currency, say the domestic one, to be lognormal, and
postulate lognormal dynamics for all forward exchange rates, while the dynamics of foreign
Libor rates is determined by the no-arbitrage relationships. The first option for the lognormal
Libor market model is described in more detail in Mikkelsen (2002).

The stochastic differential equation derived in the theorem shows that FXi(·, Tj) is a local
P0,Tj -martingale. To see that it is actually a martingale with respect to P0,Tj , we refer to the
product representation in (FXR.4). Start with time point TN , then

FXi(t, TN ) = FBi(t, TN , T ∗)FXi(t, T ∗)FB0(t, TN , T ∗)−1.

Now FBi(t, TN , T ∗) is a Pi,T ∗-martingale. FXi(t, T ∗) is according to (2.5) the density dPi,T∗

dP0,T∗

∣∣∣
Ft

up to a constant factor and FB0(t, T ∗, TN ) is according to chapter 3 the density dP0,T∗

dP0,TN

∣∣∣
Ft

again up to a constant factor. Applying now Proposition III.3.8 from Jacod and Shiryaev
(1987) twice, the martingality of FXi(t, TN ) follows.
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We carry this argument forward by induction and get the result for every Tj . Using this

martingale propertey one sees that the Tj-forward measure in the i-th foreign market is

directly related to the Tj-forward measure in the domestic market by

dPi,Tj

dP0,Tj
=
FXi(Tj , Tj)
FXi(0, Tj)

and thus the functions ζi(·, Tj , Tj+1) and ζi(·, x, Tj , Tj+1) determine a change of measure such

that under Pi,Tj

W
i,Tj

t = W
0,Tj

t −
∫ t

0
ζi(s, Tj , Tj+1) ds (4.3)

is a standard Brownian motion and

νi,Tj (dt,dx) = ζi(t, x, Tj , Tj+1)ν0,Tj (dt,dx) (4.4)

is the compensator of the random measure of jumps of µ.

It is necessary to note that there is another possibility to connect domestic and foreign fixed

income markets by setting up the backward induction procedure (see assumption (FXR.4))

on the basis of the domestic and foreign forward processes directly. Starting with equation

(3.14) the expressions for ζi(t, Tj , Tj+1) and ζi(t, x, Tj , Tj+1) are given in this case by

ζi(t, Tj , Tj+1)> = λi(t, Tj)>ct − λ0(t, Tj)>ct + ζi(t, Tj+1, Tj+2)>,

ζi(t, x, Tj , Tj+1) = exp
((
λi(t, Tj)− λ0(t, Tj)

)>
x
)
ζi(t, x, Tj+1, Tj+2),

(4.5)

where i = 1, . . . ,m and j = 1, . . . , N .

With this forward process approach one can avoid any approximation in the implementa-

tions. In a sense, this is analogous to the Gaussian Heath, Jarrow and Morton (1992) approach,

where forward bond prices are lognormal and the multicurrency extension is very tractable

(see Frey and Sommer (1996)), versus the case of the slightly more complicated lognormal

Libor market model.

5 Pricing cross-currency derivatives

In this section we examine the risk-neutral valuation of foreign market interest rate derivatives

in the framework of the cross-currency Lévy Libor model, which we developed in the previous

sections. We derive explicit pricing formulas for foreign caps and floors, cross-currency swaps

and quanto-options. All these instruments are widely used by market participants to manage

the combinations of interest rate and currency risks.
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5.1 Foreign forward caps and floors

An interest rate cap is a contract, where the seller has an obligation to pay cash to the
holder if a Libor rate exceeds a mutually agreed level at some future date or dates. Hence,
the cap is an insurance against increasing interest rates, when the holder of the cap has a
liability with a variable interest rate. An interest rate floor, on the contrary, is an insurance
against declining interest rates. In this case, the seller has an obligation to pay cash to the
holder if the Libor rate goes below a preassigned level. A foreign forward cap (or a foreign
forward floor) represents a series of caplets (floorlets), each of which is a call (put) option on
a foreign forward Libor rate, respectively. A caplet for the period [Tj−1, Tj ] with strike Ki

and a nominal amount Z ensures the holder an amount of

δZ
[
Li(Tj−1, Tj−1)−Ki

]+

at time Tj , where Li(Tj−1, Tj−1) is a foreign Libor rate at time Tj−1 for the period [Tj−1, Tj ].
Note that the caplet expires at time Tj−1, but the payoff is received at the end of the accrual
period, i.e at time Tj−1 + δ = Tj . For simplicity we will always assume that Z = 1.

Thus, the value of a foreign TN+1-maturity cap, which we denote by FCi, at time 0 < T0

can be obtained by considering the risk-neutral expectation of its discounted payoff, which is
given in terms of the corresponding forward measures by

FCi(0, TN+1) = δ
∑N+1

j=1
Bi(0, Tj)EPi,Tj

[(
Li(Tj−1, Tj−1)−Ki

)+
]
, (5.1)

whereas the price FFi(0, TN+1) at time 0 < T0 of the TN+1-maturity foreign interest rate floor
is given by

FFi(0, TN+1) = δ
∑N+1

j=1
Bi(0, Tj)EPi,Tj

[(
Ki − Li (Tj−1, Tj−1)

)+
]
.

In the following exposition we shall refer to this as the Libor rate approach.
Alternatively, we can express the prices of the foreign cap and floor FCi and FFi, by using

the foreign forward process FBi(t, Tj−1, Tj) = 1 + δLi(t, Tj−1) as an underlying. In this case
the formulas are rewritten in the form

FCi(0, TN+1) =
∑N+1

j=1
Bi(0, Tj)EPi,Tj

[(
1 + δLi(Tj−1, Tj−1)− K̃i

)+
]
,

FFi(0, TN+1) =
∑N+1

j=1
Bi(0, Tj)EPi,Tj

[(
K̃i − 1− δLi(Tj−1, Tj−1)

)+
]
,

(5.2)

where K̃i = 1+ δKi. We shall call this the forward process approach. Due to the lack of space
we shall focus on the results for this method of valuation, because it was extensively used in
the numerical implementation of the model. As already mentioned in the previous sections,
taking the foreign forward processes in the form (3.14) as the basic quantities allows us to
avoid any approximations. Similar results for the Libor rate approach can be found in Koval
(2005). To keep formulas simple we restrict the discussion in section 5.1 to the case of purely
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discontinuous processes, since all processes which we use in the implementations, are of this
type.

Recall that in the purely discontinuous case the dynamics of the foreign forward process
under the foreign forward measure Pi,Tj admits the following representation:

(
1 + δLi(Tj−1, Tj−1)

)
=

(
1 + δLi(0, Tj−1)

)
exp

(∫ Tj−1

0
λi(s, Tj−1)>b

i,Tj
s ds

+
∫ Tj−1

0

∫

Rd

λi(s, Tj−1)>x
(
µ− νi,Tj

)
(ds,dx)

)
,

where the drift term b
i, Tj

t satisfies condition (3.10) with cs ≡ 0. We put for 0 ≤ t ≤ Tj−1

Xi
Tj−1

(t) :=

t∫

0

λi(s, Tj−1)> dLi,Tj
s = ln

1 + δLi(t, Tj−1)
1 + δLi(0, Tj−1)

.

Observe that the predictable characteristics under Pi,Tj for this process are

B
Xi

Tj−1 (t) = −
∫ t

0

∫

Rd

(
eλ

i(s,Tj−1)>x − 1− λi(s, Tj−1)>x
)
νi,Tj (ds,dx),

C
Xi

Tj−1 ≡ 0,

ν
Xi

Tj−1 ([0, t]×G) =
∫ T ∗

0

∫

Rd

1[0,t]×G
(
s, λi(s, Tj−1)>x

)
νi,Tj (ds,dx),

where G ∈ B (
Rd \ {0}). Since Xi

Tj−1
is a PIIAC, its distribution at each time point t and

in particular at Tj−1 is infinitely divisible. By Theorem 9.1 in Sato (1999), we obtain with
respect to Pi,Tj the following representation of its characteristic function

χi,Tj−1(z) = exp
(

iz

∫ Tj−1

0

∫

Rd

(
λi(s, Tj−1)>x+ 1− exp

(
λi(s, Tj−1)>x

))
νi,Tj (ds,dx)

+
∫ Tj−1

0

∫

Rd

(
exp

(
izλi(s, Tj−1)>x

)
− 1− izλi(s, Tj−1)>x

)
νi,Tj (ds,dx)

)

= exp
(∫ Tj−1

0

∫

Rd

(
eizλ

i(s,Tj−1)>x − izeλ
i(s,Tj−1)>x − (1− iz)

)
νi,Tj (ds,dx)

)

(5.3)
for z ∈ R, where by equations (3.15) and (2.6) the compensator νi,Tj satisfies

νi,Tj (dt, dx) = exp

((∑N

k=j
λi(t, Tk) + ξi(t, T ∗)

)>
x

)
ν0,T ∗(dt, dx). (5.4)

We will assume that
∫∞
−∞ |χi,Tj−1(u)| du < ∞, so that the distribution of Xi

Tj−1
has a

Lebesgue density. Then the price of the foreign caplet is given by the following

Theorem 5.1 Set ξ̃ij = ln
(
K̃i

)
− ln

(
1 + δLi(0, Tj−1)

)
and let R < −1 be chosen such that

χi,Tj−1(iR) <∞. Then the price at time t = 0 of the j-th foreign caplet is given by

Ci(0, Tj , K̃i) = Bi(0, Tj)K̃i
exp

(
ξ̃ijR

)

2π

∫ ∞

−∞
exp

(
iuξ̃ij

) χi,Tj−1(iR− u)
(R+ iu)(1 +R+ iu)

du.
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Proof. The proof is completely analogous to the proof of Theorem 5.1 in Eberlein and Özkan
(2005), therefore we omit it. ¤

The integral which has to be evaluated to get the caplet price, contains the characteristic
function χi,Tj−1(z) at a complex argument z. We want to show that this characteristic function
exists along the integration path and we will derive an explicit form. For this let us introduce
a time-inhomogeneous Lévy process L̃0,T ∗ by setting

L̃0,T ∗
t := L0,T ∗

t −
∫ t

0
b0,T

∗
s ds. (5.5)

Evidently, the characteristics of L̃0,T ∗
t satisfy BeL

t = 0, C
eL
t = 0, ν

eL(dt, dx) = ν0,T ∗(dt,dx).
To simplify notation, let us further denote by θs the cumulant associated with the Lévy–

Khintchine triplet (b0,T
∗

s , Cs, λ0,T ∗
s ) given in the representation (2.2), i.e.

θs(z) = z>b0,T
∗

s +
1
2
z>Csz +

∫

Rd

(ez
>x − 1− z>x)λ0,T ∗

s (dx).

Proposition 5.2 For all z ∈ C such that Im (z) = R and R ∈
[
−1− M−(N−j+2)M−M

M
,−1

)

the characteristic function of Xi
Tj−1

(Tj−1) satisfies χi,Tj−1(z) < ∞. Furthermore, it admits
the following representation:

χi,Tj−1(z) = exp
(∫ Tj−1

0

[
θs(izλi(s, Tj−1) + ψij(s, T

∗))

−izθs(λi(s, Tj−1) + ψij(s, T
∗)) + (iz − 1)θs(ψij(s, T

∗))
]
ds

) (5.6)

where ψij(t, T
∗) := ξi(t, T ∗) +

∑N
k=j λ

i(t, Tk).

Proof. According to Proposition 8 in Eberlein and Kluge (2006) we derive

EP0,T∗

[
exp

(∫ Tj−1

0

(
izλi(s, Tj−1) + ψij(s, T

∗)
)> dL̃0,T ∗

s

)]

= exp
(∫ Tj−1

0
θs

(
izλi(s, Tj−1) + ψij(s, T

∗)
)
ds

)
(5.7)

= exp
(∫ Tj−1

0

∫

Rd

(
e(izλ

i(s,Tj−1)+ψi
j(s,T

∗))>x−1−(
izλi(s, Tj−1) + ψij(s, T

∗)
)>
x

)
ν0,T ∗(ds,dx)

)
.

where the assumption on the boundedness of the integrand in Proposition 8 is satisfied since
choosing the value of the parameter R from

[
−1− M−(N−j+2)M−M

M
,−1

)
we obtain for each

coordinate l ∈ {1, . . . , d}
∣∣∣Re

(
iz

(
λi(s, Tj−1)

)
l
+

(
ψij(s, T

∗)
)
l

)∣∣∣

≤ | −R|| (λi(s, Tj−1)
)
l
|+ ∑N

k=j |
(
λi(s, Tk)

)
l
|+ ∣∣(ξi(s, T ∗))

l

∣∣

< M − (N − j + 2)M + (N − j + 1)M +M = M.

(5.8)
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With the same argument we get

exp
(
−iz ln

(
EP0,T∗

[
exp

(∫ Tj−1

0

(
λi(s, Tj−1) + ψij(s, T

∗)
)> dL̃0,T ∗

s

)]))

= exp
(
−iz

∫ Tj−1

0
θs(λi(s, Tj−1) + ψij(s, T

∗)) ds
)

(5.9)

= exp
(
−iz

∫ Tj−1

0

∫

Rd

(
e(λ

i(s,Tj−1)+ψi
j(s,T

∗))>x − 1

− (
λi(s, Tj−1) + ψij(s, T

∗)
)>
x
)
ν0,T ∗(ds,dx)

)
,

and

exp
(

(iz − 1) ln
(
EP0,T∗

[
exp

(∫ Tj−1

0
ψij(s, T

∗)> dL̃0,T ∗
s

)]))

= exp
(

(iz − 1)
∫ Tj−1

0
θs(ψij(s, T

∗)) ds
)

(5.10)

= exp
(

(iz − 1)
∫ Tj−1

0

∫

Rd

(
exp

(
ψij(s, T

∗)>x
)
− 1− ψij(s, T

∗)>x
)
ν0,T ∗(ds,dx)

)
.

Multiplying the third lines in (5.7), (5.9), and (5.10) one easily gets the representation of the
characteristic function as given in (5.3) in connection with (5.4). Multiplying the second lines
of the same equations one gets the right-hand side of (5.6). ¤

5.2 Cross-currency swaps

A cross-currency (or differential) swap is an interest rate swap agreement, in which at least
one of the Libor rates involved is related to a foreign market. More precisely, a floating-
for-floating cross-currency (i; l; 0) swap is a financial instrument which allows swapping two
foreign Libor rates whose payments are made in units of the domestic currency. At each of
the payment dates Tj , j = 1, . . . , N +1, the Libor rate Li(Tj−1, Tj−1) of currency i is received
and the corresponding Libor rate Ll(Tj−1, Tj−1) of currency l is paid. As usual we assume
the notional amount to be 1. More generally one could consider a floating-for-floating cross-
currency swap of type (i; l;m) where payments are made in units of currency m. We shall
derive the risk-neutral value based on the forward process approach. The Libor rate approach
would force us to make approximations in this context as well.

Theorem 5.3 The time 0 value of a floating-for-floating (i; l; 0) cross-currency forward swap
in units of the domestic currency is

CCFS[i;l;0](0) =
∑N+1

j=1
B0(0, Tj)

(
Bi(0, Tj−1)
Bi(0, Tj)

exp
(Di(0, Tj−1, Tj)

)
(5.11)

− Bl(0, Tj−1)
Bl(0, Tj)

exp
(
Dl(0, Tj−1, Tj)

))
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where

Di(0, Tj−1, Tj) = −
∫ Tj−1

0
λi(s, Tj−1)>csζi(s, Tj , Tj+1) ds

−
∫ Tj−1

0

∫

Rd

(
exp

(
λi(s, Tj−1)>x

)
− 1

) (
ζi(s, x, Tj , Tj+1)− 1

)
ν0,Tj (ds,dx)

and ζi(s, Tj , Tj+1) = cs

(
ξi(s, T ∗) +

∑N
k=j

(
λi(s, Tk)− λ0(s, Tk)

))
, whereas ζi(s, x, Tj , Tj+1) =

exp
(
ξi(s, T ∗)>x+

∑N
k=j(λ

i(s, Tk)− λ0(s, Tk))>x
)

and analogously for Dl.

Proof. At tenor time point Tj the cashflow of this swap is δ(Li(Tj−1, Tj−1)−Ll(Tj−1, Tj−1)).
We write this as 1 + δLi(Tj−1, Tj−1) − (1 + δLl(Tj−1, Tj−1)) since we shall price the claim
based on the forward process approach. Using domestic forward measures we get

CCFS[i;l;0](0) =
∑N+1

j=1
B0(0, Tj)

(
EP0,Tj

[
1 + δLi(Tj−1, Tj−1)−

(
1 + δLl(Tj−1, Tj−1)

)])
.

Consequently we have to compute the expectation EP0,Tj [1+δLi(Tj−1, Tj−1)] and analogously
for i replaced by l. Under Pi,Tj we have by construction

1 + δLi(t, Tj−1) = (1 + δLi(0, Tj−1)) exp
(∫ t

0
λi(s, Tj−1)> dLi,Tj

s

)
,

where Li,Tj
s is given by (3.9) with bi,Tj

s chosen appropriately. Therefore, we get

1 + δLi(Tj−1, Tj−1)

= (1 + δLi(0, Tj−1)) exp
(∫ Tj−1

0
λi(s, Tj−1)>cs dW i,Tj

s

− 1
2

∫ Tj−1

0
|λi(s, Tj−1)>cs|2 ds+

∫ Tj−1

0

∫

Rd

λi(s, Tj−1)>x(µ− νi,Tj )(ds,dx)

−
∫ Tj−1

0

∫

Rd

(
exp

(
λi(s, Tj−1)>x

)
− 1− λi(s, Tj−1)>x

)
νi,Tj (ds,dx)

)
.

Defining

Mi(0, Tj−1, Tj) =
∫ Tj−1

0
λi(s, Tj−1)>cs dW 0,Tj

s − 1
2

∫ Tj−1

0
|λi(s, Tj−1)>cs|2 ds

+
∫ Tj−1

0

∫

Rd

λi(s, Tj−1)>x (µ− ν0,Tj )(ds,dx)

−
∫ Tj−1

0

∫

Rd

(
exp

(
λi(s, Tj−1)>x

)
− 1− λi(s, Tj−1)>x

)
ν0,Tj (ds,dx)

and using (4.3), (4.4) we get the last exponent in the form Mi(0, Tj−1, Tj) +Di(0, Tj−1, Tj).
Now Di(0, Tj−1, Tj) is non-random and EP0,Tj [exp

(Mi(0, Tj−1, Tj)
)
] = 1, therefore,

EP0,Tj [1 + δLi(Tj−1, Tj−1)] = (1 + δLi(0, Tj−1)) exp
(Di(0, Tj−1, Tj)

)
.

From this the result follows. The explicit expressions for ζi(s, Tj , Tj+1) and ζi(s, x, Tj , Tj+1)
are immediate consequences of (4.5). ¤
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Remark 5.4 For a (i; 0; 0) cross-currency swap, i.e. if the second Libor rate is the domestic
one, (5.11) simplifies to

CCFS[i;0;0](0) =
∑N+1

j=1
B0(0, Tj)

Bi(0, Tj−1)
Bi(0, Tj)

exp
(Di(0, Tj−1, Tj)

)−
∑N+1

j=1
B0(0, Tj−1).

The last formula is a consequence of the P0,Tj -martingality of the forward process (1 +
δL0(t, Tj−1))0≤t≤Tj−1 .

5.3 Quanto caplets

A quanto caplet with strike Ki, which expires at time Tj−1, pays to its holder at time Tj the
amount of

QCpli(Tj , Tj ,Ki) = δX̄i
(
Li (Tj−1, Tj−1)−Ki

)+
,

where X̄i for i = 1, . . . ,m is the preassigned foreign exchange rate and j = 1, . . . , N + 1.
The value of a quanto caplet at time t = 0 can be obtained by considering the risk-neutral
expectation of its discounted payoff, which is given again in terms of the corresponding forward
measures by

QCpli(0, Tj ,Ki) = B0(0, Tj) EP0,Tj

[
δX̄i

(
Li (Tj−1, Tj−1)−Ki

)+
]

= B0(0, Tj)X̄i EP0,Tj

[(
1 + δLi (Tj−1, Tj−1)−

(
1 + δKi)

)+
]
.

Using the dynamics of the forward process (1 + δLi (t, Tj−1))0≤t≤Tj−1 and the quantities
Di(0, Tj−1, Tj) and Mi(0, Tj−1, Tj) as in the proof of Theorem 5.3 we write this as

B0(0, Tj)X̄i EP0,Tj

[((
1 + δLi(0, Tj−1)

)
eM

i(0,Tj−1,Tj)+Di(0,Tj−1,Tj) − (
1 + δKi)

)+
]

= B0(0, Tj)X̄i
(
1 + δKi)EP0,Tj

[(
exp

(Mi(0, Tj−1, Tj)− ξj
)− 1

)+
]
,

where ξj = ln
(
1 + δKi)− ln

(
1 + δLi(0, Tj−1)

)−Di(0, Tj−1, Tj). Defining v(x) = (e−x − 1)+

and assuming that the distribution of Mi(0, Tj−1, Tj) has a density ρ(x) we get

QCpli(0, Tj ,Ki) = B0(0, Tj)X̄i
(
1 + δKi)

∫ ∞

−∞
v(ξj − x)ρ(x) dx

= B0(0, Tj)X̄i
(
1 + δKi) (v ∗ ρ)(ξj).

Now proceeding in the same way as in Raible (2000) p.64 or in the proof of Theorem 5.1
in Eberlein and Özkan (2005) we get the following result

QCpli(0, Tj ,Ki) = B0(0, Tj)X̄i
(
1 + δKi) exp (ξjR)

2π

∫ ∞

−∞
exp (iuξj)

χMi,Tj−1(iR− u)
(R+ iu)(R+ 1 + iu)

du,
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where R < −1 is chosen such that the characteristic function χMi,Tj−1(u) of the random
variable Mi(0, Tj−1, Tj) satisfies χMi,Tj−1(iR) < ∞. The existence of such an R is shown as
in Proposition 5.2. The explicit form of this characteristic function is

χM
i,Tj−1(u) = exp

(
− u(u+ i)

2

∫ Tj−1

0

∣∣λi(s, Tj−1)>cs
∣∣2 ds

+
∫ Tj−1

0

∫

Rd

(
eiuλ

i(s,Tj−1)>x − iueλ
i(s,Tj−1)>x − (1− iu)

)
ν0,Tj (ds,dx)

)
.

6 Model calibration

While the pricing problem is mainly concerned with computing values of options, given the
model parameters, here we are interested in backing out the parameters, describing the risk-
neutral dynamics of domestic and foreign Libor rates from the market prices of interest rate
options. The data set we consider here consists of prices for interest rate caps in two different
currencies: Euro (EUR) and US Dollar (USD) with maturities ranging from 1 to 10 years,
and five different strike rates in each currency. We have chosen the EUR market to be the
domestic one.

The market quotes prices of caps and floors mainly by their implied volatilities (annualized
and in percentage). This entails the existence of a “standard” market model, because otherwise
it would make no sense to quote prices in the language of a parameter in a model. The
following formula for the price of the TN+1-maturity cap (settled in arrears at dates Tj , j =
2, . . . , N + 1), is in fact the market standard, and the lognormal Libor model behind it is
called the market model.

FCN
mkt(t, TN ) = δ

∑N+1

j=2
B(t, Tj) [L(0, Tj−1)Φ(D1)−KΦ(D2)] ,

where Φ(·) denotes the standard Gaussian distribution function and

D1 =
ln

(
L(0,Tj−1)

K

)
+ 1

2σ
2
NTj−1

σN
√
Tj−1

, D2 = D1 − σN
√
Tj−1.

To describe the calibration procedure, we first have to specify the main components of
the model. These are the driving process L and the volatility structures λi for i = 0, . . . ,m
and ξi for i = 1, . . . ,m. We have chosen the first one to be a “piecewise Lévy process”. More
specifically, we divide the time interval [0, T ∗], where T ∗ = 10 years into N subintervals, which
might have different lengths. With each subinterval we associate a homogeneous Lévy process
with NIG-distributed increments of length 1. This particular choice of the driving process can
be justified by the behaviour of the traders in fixed income markets. They distinguish between
certain maturity ranges such as short, middle, long, and we relate these ranges to piecewise
stationary parameters. Let us mention in this context that the traditional classification in a
one-, two-, etc. factor model, which is used for models driven by Brownian motions, is not
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Figure 6.1 Euro caplet implied volatility surface on July 20, 2003.
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Figure 6.2 USD caplet implied volatility surface on July 20, 2003.

appropriate here. The driving process, even if one-dimensional, is itself a highdimensional

object.

The second ingredient to our model – the volatility structure λi – has the following para-
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metric form: for ai ∈ R and bi, ci > 0

λi(t, Tj ; ai, bi, ci) = ai(Tj − t) exp
(−bi(Tj − t)

)
+ ci

= aiτj exp
(−biτj

)
+ ci, (6.1)

where τj = Tj − t and i = 0, . . . ,m. The volatility structure of the foreign forward exchange
rate ξi has the same representation, i.e. for ãi ∈ R and b̃i, c̃i > 0 we have ξi(t, T ∗; ãi, b̃i, c̃i) =
ãi(T ∗−t) exp

(
−b̃i(T ∗ − t)

)
+ c̃i for i = 1, . . . ,m. As for the functional form chosen for λi and

ξi, the presence of a linear term together with a decaying exponential allows for the existence
of a hump in the curve. We will always set the value of parameters ai and ãi to be equal to
one, since these constants can be included into the driving process L. A broad overview of
different volatility structures, which can be applied in Libor rate models, is given in Brigo
and Mercurio (2001).

We calibrate the forward process model, introduced in the previous section, to the market
prices of caplets. More specifically, we choose the weighted sum of squared errors between the
model and market prices of caplets E, given by

E(m,N,K1, . . . ,Km,∆) =
m∑

i=0

N∑

j=1

Ki∑

l=1

wijl
[
Cplimdl(0, Tj ,K

i
l ,∆)− Cplimkt(0, Tj ,K

i
l )

]2 (6.2)

to be the objective function. In the equation above m stands for the number of foreign
currencies, N for the number of different caplets, Ki for the number of strike rates for each
currency i with i = 0, . . . ,m, and Tj for the maturity of the options. The model price Cplimdl

depends on the set ∆ = (T ,Γ,Λ,Ξ), where

• T is the partition of the time interval [0, T ∗],

• Γ is the set of distribution parameters,

• Λ is the set of parameters describing the Libor rate volatility structure,

• Ξ is the set of parameters describing the forward exchange rate volatility structure.

More specifically, T =
{
(T0, . . . , TN ) ∈ RN+1, T0 = 0, TN = T ∗

}
,

Γ =







α1, β1, δ1,
...

...
...

αN , βN , δN


 ∈ R3N , 0 ≤ |βl| < αl, δl > 0 for l = 1, . . . ,N




,

Λ =







b0, c0,
...

...
bm, cm


 ∈ R2m+2, bl, cl ≥ 0, for l = 0, . . . ,m




, (6.3)

Ξ =







b̃1, c̃1,
...

...
b̃m, c̃m


 ∈ R2m, b̃l, c̃l ≥ 0, for l = 1, . . . ,m




.
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Note that in the set Γ each triple (αl, βl, δl) corresponds to the time interval (Tl−1, Tl] for
l = 1, . . . ,N . The weights wijl in (6.2) can be chosen in different ways. For example, in Eberlein
and Kluge (2006) they are given by the reciprocal ATM prices for the respective maturity.

Calibration problem: Given the set of observed market prices of caplets

Cplmkt =
{

Cplimkt(0, Tj ,K
i
l )

∣∣ i = 0, . . . ,m; j = 1, . . . , N ; Ki
l , l = 1, . . . ,Ki} ,

we have to find such a set of parameters ∆ that minimizes the value of the objective function
E given in (6.2).

Notice that the final time horizon, after which any market activity is no longer considered,
is equal to 10 years. It means that the last payoff occurs at time T = 10 years. However, the
option embedded in the last caplet matures at time T = 9.5 years.

Thus, the number of parameters Q in our model, which are subject to calibration, is equal
to Q = (N − 1) + 3N + 2(m + 1) + 2m = 4(N + m) + 1, where (N − 1) is the number of
partition parameters, 3N is the number of distribution parameters, 2(m + 1) is the number
of parameters describing the Libor volatility structures, and 2m is the number of parameters
describing the volatilities of foreign forward exchange rates. It follows from equations (6.2)
and (6.3) that the calibration problem is a constrained nonlinear least squares problem.

In case of our data set the objective function E satisfies

E(1, 19, 5, 5) =
1∑

i=0

19∑

j=1

5∑

l=1

[
Cplimdl(0, Tj ,K

i
l ,∆)− Cplimkt(0, Tj ,K

i
l )

]2
,

where i ∈ {EUR,USD}. The minimal value of the objective function E is given by E =
2.21136e − 07, which corresponds to the partition parameters set T and the distribution
parameters set Γ, presented in Table 6.1 below. The optimal values of the parameters for the

Tj (years) Interval α β δ

T1 0.89 (0, T1] 356.43 53.77 0.0530

T2 1.40 (T1, T2] 138.92 99.53 0.1580

T3 9.15 (T2, T3] 60.34 2.53 0.0101

T4 9.50 (T3, T4] 150.25 137.05 0.0235

Table 6.1 Values of partition and distribution parameters

Libor rate volatility structures and the parameters describing the volatility of the EUR/USD
forward exchange rate are given in Table 6.2. The absolute value of the differences between
volatilities implied by the market prices and those from the forward process model for EUR
caplets is shown in Figure 6.3. In Figure 6.4 one can see the absolute difference between
implied volatilities of the market and the forward process model prices for USD caplets.

The results of the model calibration to EUR and USD market prices show that both
volatility structures, illustrated in Figures 6.1 and 6.2, are fitted well. The largest deviations
from the market implied volatilities are given by 2.75% and 2.57% for EUR and USD model
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Volatility structure: b c

EUR Libor rate 3.67 0.11

USD Libor rate 3.32 0.13

EUR/USD forward FX rate 0.46 0.06

Table 6.2 Parameter values: forward process model.
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Figure 6.3 Absolute errors of EUR caplet calibration.
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Figure 6.4 Absolute errors of USD caplet calibration.

implied volatilities respectively. These correspond to absolute differences of 7.56e–05 EUR

and 4.24e–05 USD in the prices and are therefore negligible.
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A Appendix

Proof of Theorem 4.1. Starting with the maturity TN , we denote by

F Bi

B0

(t, TN , T ∗) :=
FBi (t, TN , T ∗)
FB0 (t, TN , T ∗)

= FBi (t, TN , T ∗)FB0 (t, T ∗, TN ) for t ∈ [0, TN ]

the mixed forward price ratio for the dates TN and T ∗, where i = 1, . . . ,m. The dynamics
of F Bi

B0

(·, TN , T ∗) under the domestic forward measure P0,T ∗ can be determined using the

integration by parts formula (see Corollary II.6.2 in Protter (1990)). More precisely,

dF Bi

B0

(t, TN , T ∗) = FBi (t−, TN , T ∗) dFB0 (t, T ∗, TN ) + FB0 (t−, T ∗, TN ) dFBi (t, TN , T ∗)

+ d[FBi (·, TN , T ∗) , FB0 (·, T ∗, TN )]t .

Let us first consider the domestic inverse forward rate FB0 (t, T ∗, TN ) := FB0 (t, TN , T ∗)−1 .

Applying Itô’s formula to equation (3.11), we obtain its dynamics under the domestic forward
measure P0,T ∗

dFB0 (t, T ∗, TN )
FB0 (t−, T ∗, TN )

= − α0 (t, TN , T ∗)> dW 0,T ∗
t −

∫

Rd

(
β0 (t, x, TN , T ∗)− 1

)
(µ− ν0,T ∗) (dt, dx)

+
∣∣α0(t, TN , T ∗)

∣∣2 dt+
∫

Rd

(
β0(t, x, TN , T ∗)− 1

)2

β0(t, x, TN , T ∗)
µ(dt, dx)

= − α0 (t, TN , T ∗)> dW 0,T ∗
t +

∣∣α0 (t, TN , T ∗)
∣∣2 dt (A.1)

+
∫

Rd

(
1

β0 (t, x, TN , T ∗)
− 1

)
(µ− ν0,T ∗) (dt,dx)

+
∫

Rd

(
1

β0 (t, x, TN , T ∗)
− 1 + β0 (t, x, TN , T ∗)− 1

)
ν0,T ∗(dt,dx).

Combining equation (3.6) with equations (2.6), we obtain the following dynamics of the foreign
forward process FBi (·, TN , T ∗) with i = 1, . . . ,m under the domestic forward measure P0,T ∗

dFBi(t, TN , T ∗)
FBi(t−, TN , T ∗) = αi(t, TN , T ∗)>

(
dW 0,T ∗

t − ct ξ
i(t, T ∗) dt

)

+
∫

Rd

(
βi(t, x, TN , T ∗)− 1

)
(µ− ν0,T ∗) (dt, dx) (A.2)

−
∫

Rd

(
βi(t, x, TN , T ∗)− 1

) (
exp

(
ξi(t, T ∗)>x

)
− 1

)
ν0,T ∗(dt, dx).

Equations (A.1) and (A.2) yield

FBi (t−, TN , T ∗) dFB0 (t, T ∗, TN )

= FBi (t−, TN , T ∗)FB0 (t−, T ∗, TN )
[
− α0(t, TN , T ∗)> dW 0,T ∗

t +
∣∣α0(t, TN , T ∗)

∣∣2 dt
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+
∫

Rd

(
1

β0 (t, x, TN , T ∗)
− 1

)
(µ− ν0,T ∗) (dt,dx)

+
∫

Rd

(
1

β0 (t, x, TN , T ∗)
− 1 + β0 (t, x, TN , T ∗)− 1

)
ν0,T ∗(dt, dx)

]
,

and

FB0 (t−, T ∗, TN ) dFBi (t, TN , T ∗) =

= FB0 (t−, T ∗, TN )FBi (t−, TN , T ∗)
[
αi(t, TN , T ∗)>

(
dW 0,T ∗

t − ct ξ
i(t, T ∗) dt

)

+
∫

Rd

(
βi(t, x, TN , T ∗)− 1

)
(µ− ν0,T ∗) (dt,dx)

−
∫

Rd

(
βi(t, x, TN , T ∗)− 1

) (
exp

(
ξi(t, T ∗)>x

)
− 1

)
ν0,T ∗(dt, dx)

]
.

Applying Theorem I.4.52 in Jacod and Shiryaev (1987), we get

[FBi (·, TN , T ∗) , FB0 (·, T ∗, TN )]t =
〈
F cBi (t, TN , T ∗) , F cB0 (t, T ∗, TN )

〉
t

+
∑

s≤t
∆FBi (s, TN , T ∗)∆FB0 (s, T ∗, TN ) .

From equations (A.1) and (A.2) we infer that the predictable covariation of the forward
processes FBi (t, TN , T ∗) and FB0 (t, T ∗, TN ) is given by

d
〈
F c
Bi (·, TN , T ∗) , F cB0 (·, T ∗, TN )

〉
t

FBi (t−, TN , T ∗)FB0 (t−, T ∗, TN )
= −α0 (t, TN , T ∗)> αi (t, TN , T ∗) dt, i = 1, . . . ,m.

The jumps of FBi (t, TN , T ∗) and FB0 (t, T ∗, TN ) satisfy

∆FBi (t, TN , T ∗) = FBi (t−, TN , T ∗)
∫

Rd

(
βi (t, x, TN , T ∗)− 1

)
µ({t} × dx),

∆FB0 (t, T ∗, TN ) = FB0 (t−, T ∗, TN )
∫

Rd

(
1

β0 (t, x, TN , T ∗)
− 1

)
µ({t} × dx).

Hence,

d[FBi (·, TN , T ∗) , FB0 (·, T ∗, TN )]t
FBi (t−, TN , T ∗)FB0 (t−, T ∗, TN )

= − α0 (t, TN , T ∗)> αi (t, TN , T ∗) dt

+
∫

Rd

(
βi (t, x, TN , T ∗)− 1

) (
1

β0 (t, x, TN , T ∗)
− 1

)
µ(dt, dx).

Summing up, we obtain

dF Bi

B0

(t, TN , T ∗)

F Bi

B0

(t−, TN , T ∗) =
(
αi (t, TN , T ∗)− α0 (t, TN , T ∗)

)> (
dW 0,T ∗

t − α0 (t, TN , T ∗) dt
)

− αi (t, TN , T ∗)> ct ξi (t, T ∗) dt

+
∫

Rd

(
βi (t, x, TN , T ∗)
β0 (t, x, TN , T ∗)

− 1
)

(µ− ν0,T ∗) (dt, dx) (A.3)
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+
∫

Rd

(
exp

(
ξi(t, T ∗)>x

)
− 1 + β0(t, x, TN , T ∗)− 1

+ βi (t, x, TN , T ∗)
(

1
β0 (t, x, TN , T ∗)

− exp
(
ξi(t, T ∗)>x

)))
ν0,T ∗(dt, dx).

Making use of assumption (FXR.4), we can determine the foreign forward exchange rate
FXi(·, TN ), applying the integration by parts rule to the product of the terminal forward
exchange rate FXi(·, T ∗) and the mixed forward price ratio F Bi

B0

(·, TN , T ∗). More specifically,

dFXi(t, TN ) = FXi(t−, T ∗) dF Bi

B0

(t, TN , T ∗) + F Bi

B0

(t−, TN , T ∗) dFXi(t, T ∗)

+d
[
FXi(·, T ∗), F Bi

B0

(·, TN , T ∗)
]

t

.

From this we obtain finally

dFXi (t, TN )
FXi (t−, TN )

=
(
αi (t, TN , T ∗)− α0 (t, TN , T ∗) + ct ξ

i (t, T ∗)
)> dW 0,T ∗

t

− (
αi (t, TN , T ∗)− α0 (t, TN , T ∗) + ct ξ

i (t, T ∗)
)>
α0 (t, TN , T ∗) dt

+
∫

Rd

(
βi (t, x, TN , T ∗)
β0 (t, x, TN , T ∗)

exp
(
ξi(t, T ∗)>x

)
− 1

)
(µ− ν0,T ∗) (dt, dx)

+
∫

Rd

[
exp

(
ξi(t, T ∗)>x

)(
βi (t, x, TN , T ∗)
β0 (t, x, TN , T ∗)

− βi (t, x, TN , T ∗)
)

+ β0(t, x, TN , T ∗)− 1
]
ν0,T ∗(dt, dx).

Applying equations (3.7), we can rewrite the last equation under the domestic forward measure
P0,TN in the following way

dFXi (t, TN )
FXi (t−, TN )

= ζi (t, TN , T ∗)> dW 0,TN
t +

∫

Rd

(
ζi(t, x, TN , T ∗)− 1

)
(µ− ν0,TN

) (dt, dx),

where we have set

ζi (t, TN , T ∗)> := αi (t, TN , T ∗)> − α0 (t, TN , T ∗)> + ξi (t, T ∗)> ct,

ζi(t, x, TN , T ∗) :=
βi (t, x, TN , T ∗)
β0 (t, x, TN , T ∗)

exp
(
ξi(t, T ∗)>x

)
.

Analogously as for date TN we derive the dynamics for the other forward exchange rates in
an inductive way using in each step the product representation in (FXR.4).
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Raible, S. (2000). Lévy Processes in Finance: Theory, Numerics, and Empirical Facts.
Ph.D.thesis, University of Freiburg.
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